File size: 3,826 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright (c) OpenMMLab. All rights reserved.
import logging
import os.path as osp

import pytest
import torch
import torch.nn as nn
from torch.utils.data import Dataset

from mmcv.runner import build_runner
from mmcv.utils import IS_IPU_AVAILABLE

if IS_IPU_AVAILABLE:
    from mmcv.device.ipu import IPUDataLoader, runner

skip_no_ipu = pytest.mark.skipif(
    not IS_IPU_AVAILABLE, reason='test case under ipu environment')

# Most of its functions are inherited from EpochBasedRunner and IterBasedRunner
# So only do incremental testing on overridden methods
# Comparing with base runner,
# Overridden functions are listed below:
# __init__, register_lr_hook, register_optimizer_hook
# register_lr_hook and register_optimizer_hook are tested in test_runner.py


class OldStyleModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(3, 3, 1)


class Model(OldStyleModel):

    def train_step(self):
        pass

    def val_step(self):
        pass


class ToyModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(3, 3, 1)
        self.bn = nn.BatchNorm2d(3)
        self.relu = nn.ReLU6()
        self.fp16_enabled = False

    def forward(self, img, return_loss=True, **kwargs):
        x = self.conv(img)
        x = self.bn(x)
        x = self.relu(x)
        if return_loss:
            loss = ((x - kwargs['gt_label'])**2).sum()
            return {'loss': loss, 'loss1': loss + 1}
        return x

    def _parse_losses(self, losses):
        return losses['loss'], {'loss1': losses['loss']}

    def train_step(self, data, optimizer=None, **kwargs):
        losses = self(**data)
        loss, log_vars = self._parse_losses(losses)
        outputs = dict(
            loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
        return outputs


class ToyDataset(Dataset):

    def __getitem__(self, index):
        return {
            'img': torch.rand((3, 10, 10)),
            'gt_label': torch.rand((3, 10, 10))
        }

    def __len__(self, ):
        return 3


@skip_no_ipu
def test_build_runner(tmp_path):
    # __init__
    dir_name = 'a_tmp_dir'

    default_args = dict(
        model=Model(),
        work_dir=osp.join(tmp_path, dir_name),
        logger=logging.getLogger())
    cfg = dict(type='IPUEpochBasedRunner', max_epochs=1)
    ipu_runner = build_runner(cfg, default_args=default_args)
    assert ipu_runner._max_epochs == 1
    cfg = dict(type='IPUIterBasedRunner', max_iters=1)
    ipu_runner = build_runner(cfg, default_args=default_args)
    assert ipu_runner._max_iters == 1

    runner.IS_IPU_AVAILABLE = False
    cfg = dict(type='IPUIterBasedRunner', max_iters=1)
    with pytest.raises(
            NotImplementedError,
            match='cpu mode on IPURunner is not supported'):
        ipu_runner = build_runner(cfg, default_args=default_args)

    runner.IS_IPU_AVAILABLE = True
    with pytest.raises(ValueError, match='Only one of'):
        cfg = dict(type='IPUIterBasedRunner', max_epochs=1, max_iters=1)
        ipu_runner = build_runner(cfg, default_args=default_args)

    model = ToyModel()
    options_cfg = {'train_cfg': {}, 'eval_cfg': {}}
    dataloader = IPUDataLoader(ToyDataset(), None, num_workers=1)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
    cfg = dict(type='IPUIterBasedRunner', max_iters=2, options_cfg=options_cfg)
    default_args = dict(
        model=model,
        optimizer=optimizer,
        work_dir=osp.join(tmp_path, dir_name),
        logger=logging.getLogger())
    ipu_runner = build_runner(cfg, default_args=default_args)
    ipu_runner.run([dataloader], [('train', 2)])
    ipu_runner.get_options('val')
    with pytest.raises(ValueError, match='mode should be train or val'):
        ipu_runner.get_options('666')