Spaces:
Running
on
L40S
Running
on
L40S
File size: 17,056 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
# Copyright (c) OpenMMLab. All rights reserved.
import sys
from collections import OrderedDict
from tempfile import TemporaryDirectory
from unittest.mock import MagicMock, patch
import pytest
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DataParallel
from mmcv.fileio.file_client import PetrelBackend
from mmcv.parallel.registry import MODULE_WRAPPERS
from mmcv.runner.checkpoint import (_load_checkpoint_with_prefix,
get_state_dict, load_checkpoint,
load_from_local, load_from_pavi,
save_checkpoint)
sys.modules['petrel_client'] = MagicMock()
sys.modules['petrel_client.client'] = MagicMock()
@MODULE_WRAPPERS.register_module()
class DDPWrapper:
def __init__(self, module):
self.module = module
class Block(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(3, 3, 1)
self.norm = nn.BatchNorm2d(3)
class Model(nn.Module):
def __init__(self):
super().__init__()
self.block = Block()
self.conv = nn.Conv2d(3, 3, 1)
class Mockpavimodel:
def __init__(self, name='fakename'):
self.name = name
def download(self, file):
pass
def assert_tensor_equal(tensor_a, tensor_b):
assert tensor_a.eq(tensor_b).all()
def test_get_state_dict():
if torch.__version__ == 'parrots':
state_dict_keys = {
'block.conv.weight', 'block.conv.bias', 'block.norm.weight',
'block.norm.bias', 'block.norm.running_mean',
'block.norm.running_var', 'conv.weight', 'conv.bias'
}
else:
state_dict_keys = {
'block.conv.weight', 'block.conv.bias', 'block.norm.weight',
'block.norm.bias', 'block.norm.running_mean',
'block.norm.running_var', 'block.norm.num_batches_tracked',
'conv.weight', 'conv.bias'
}
model = Model()
state_dict = get_state_dict(model)
assert isinstance(state_dict, OrderedDict)
assert set(state_dict.keys()) == state_dict_keys
assert_tensor_equal(state_dict['block.conv.weight'],
model.block.conv.weight)
assert_tensor_equal(state_dict['block.conv.bias'], model.block.conv.bias)
assert_tensor_equal(state_dict['block.norm.weight'],
model.block.norm.weight)
assert_tensor_equal(state_dict['block.norm.bias'], model.block.norm.bias)
assert_tensor_equal(state_dict['block.norm.running_mean'],
model.block.norm.running_mean)
assert_tensor_equal(state_dict['block.norm.running_var'],
model.block.norm.running_var)
if torch.__version__ != 'parrots':
assert_tensor_equal(state_dict['block.norm.num_batches_tracked'],
model.block.norm.num_batches_tracked)
assert_tensor_equal(state_dict['conv.weight'], model.conv.weight)
assert_tensor_equal(state_dict['conv.bias'], model.conv.bias)
wrapped_model = DDPWrapper(model)
state_dict = get_state_dict(wrapped_model)
assert isinstance(state_dict, OrderedDict)
assert set(state_dict.keys()) == state_dict_keys
assert_tensor_equal(state_dict['block.conv.weight'],
wrapped_model.module.block.conv.weight)
assert_tensor_equal(state_dict['block.conv.bias'],
wrapped_model.module.block.conv.bias)
assert_tensor_equal(state_dict['block.norm.weight'],
wrapped_model.module.block.norm.weight)
assert_tensor_equal(state_dict['block.norm.bias'],
wrapped_model.module.block.norm.bias)
assert_tensor_equal(state_dict['block.norm.running_mean'],
wrapped_model.module.block.norm.running_mean)
assert_tensor_equal(state_dict['block.norm.running_var'],
wrapped_model.module.block.norm.running_var)
if torch.__version__ != 'parrots':
assert_tensor_equal(
state_dict['block.norm.num_batches_tracked'],
wrapped_model.module.block.norm.num_batches_tracked)
assert_tensor_equal(state_dict['conv.weight'],
wrapped_model.module.conv.weight)
assert_tensor_equal(state_dict['conv.bias'],
wrapped_model.module.conv.bias)
# wrapped inner module
for name, module in wrapped_model.module._modules.items():
module = DataParallel(module)
wrapped_model.module._modules[name] = module
state_dict = get_state_dict(wrapped_model)
assert isinstance(state_dict, OrderedDict)
assert set(state_dict.keys()) == state_dict_keys
assert_tensor_equal(state_dict['block.conv.weight'],
wrapped_model.module.block.module.conv.weight)
assert_tensor_equal(state_dict['block.conv.bias'],
wrapped_model.module.block.module.conv.bias)
assert_tensor_equal(state_dict['block.norm.weight'],
wrapped_model.module.block.module.norm.weight)
assert_tensor_equal(state_dict['block.norm.bias'],
wrapped_model.module.block.module.norm.bias)
assert_tensor_equal(state_dict['block.norm.running_mean'],
wrapped_model.module.block.module.norm.running_mean)
assert_tensor_equal(state_dict['block.norm.running_var'],
wrapped_model.module.block.module.norm.running_var)
if torch.__version__ != 'parrots':
assert_tensor_equal(
state_dict['block.norm.num_batches_tracked'],
wrapped_model.module.block.module.norm.num_batches_tracked)
assert_tensor_equal(state_dict['conv.weight'],
wrapped_model.module.conv.module.weight)
assert_tensor_equal(state_dict['conv.bias'],
wrapped_model.module.conv.module.bias)
def test_load_pavimodel_dist():
sys.modules['pavi'] = MagicMock()
sys.modules['pavi.modelcloud'] = MagicMock()
pavimodel = Mockpavimodel()
import pavi
pavi.modelcloud.get = MagicMock(return_value=pavimodel)
with pytest.raises(AssertionError):
# test pavi prefix
_ = load_from_pavi('MyPaviFolder/checkpoint.pth')
with pytest.raises(FileNotFoundError):
# there is not such checkpoint for us to load
_ = load_from_pavi('pavi://checkpoint.pth')
def test_load_checkpoint_with_prefix():
class FooModule(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(1, 2)
self.conv2d = nn.Conv2d(3, 1, 3)
self.conv2d_2 = nn.Conv2d(3, 2, 3)
model = FooModule()
nn.init.constant_(model.linear.weight, 1)
nn.init.constant_(model.linear.bias, 2)
nn.init.constant_(model.conv2d.weight, 3)
nn.init.constant_(model.conv2d.bias, 4)
nn.init.constant_(model.conv2d_2.weight, 5)
nn.init.constant_(model.conv2d_2.bias, 6)
with TemporaryDirectory():
torch.save(model.state_dict(), 'model.pth')
prefix = 'conv2d'
state_dict = _load_checkpoint_with_prefix(prefix, 'model.pth')
assert torch.equal(model.conv2d.state_dict()['weight'],
state_dict['weight'])
assert torch.equal(model.conv2d.state_dict()['bias'],
state_dict['bias'])
# test whether prefix is in pretrained model
with pytest.raises(AssertionError):
prefix = 'back'
_load_checkpoint_with_prefix(prefix, 'model.pth')
def test_load_checkpoint():
import os
import re
import tempfile
class PrefixModel(nn.Module):
def __init__(self):
super().__init__()
self.backbone = Model()
pmodel = PrefixModel()
model = Model()
checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
# add prefix
torch.save(model.state_dict(), checkpoint_path)
state_dict = load_checkpoint(
pmodel, checkpoint_path, revise_keys=[(r'^', 'backbone.')])
for key in pmodel.backbone.state_dict().keys():
assert torch.equal(pmodel.backbone.state_dict()[key], state_dict[key])
# strip prefix
torch.save(pmodel.state_dict(), checkpoint_path)
state_dict = load_checkpoint(
model, checkpoint_path, revise_keys=[(r'^backbone\.', '')])
for key in state_dict.keys():
key_stripped = re.sub(r'^backbone\.', '', key)
assert torch.equal(model.state_dict()[key_stripped], state_dict[key])
os.remove(checkpoint_path)
def test_load_checkpoint_metadata():
import os
import tempfile
from mmcv.runner import load_checkpoint, save_checkpoint
class ModelV1(nn.Module):
def __init__(self):
super().__init__()
self.block = Block()
self.conv1 = nn.Conv2d(3, 3, 1)
self.conv2 = nn.Conv2d(3, 3, 1)
nn.init.normal_(self.conv1.weight)
nn.init.normal_(self.conv2.weight)
class ModelV2(nn.Module):
_version = 2
def __init__(self):
super().__init__()
self.block = Block()
self.conv0 = nn.Conv2d(3, 3, 1)
self.conv1 = nn.Conv2d(3, 3, 1)
nn.init.normal_(self.conv0.weight)
nn.init.normal_(self.conv1.weight)
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
*args, **kwargs):
"""load checkpoints."""
# Names of some parameters in has been changed.
version = local_metadata.get('version', None)
if version is None or version < 2:
state_dict_keys = list(state_dict.keys())
convert_map = {'conv1': 'conv0', 'conv2': 'conv1'}
for k in state_dict_keys:
for ori_str, new_str in convert_map.items():
if k.startswith(prefix + ori_str):
new_key = k.replace(ori_str, new_str)
state_dict[new_key] = state_dict[k]
del state_dict[k]
super()._load_from_state_dict(state_dict, prefix, local_metadata,
*args, **kwargs)
model_v1 = ModelV1()
model_v1_conv0_weight = model_v1.conv1.weight.detach()
model_v1_conv1_weight = model_v1.conv2.weight.detach()
model_v2 = ModelV2()
model_v2_conv0_weight = model_v2.conv0.weight.detach()
model_v2_conv1_weight = model_v2.conv1.weight.detach()
ckpt_v1_path = os.path.join(tempfile.gettempdir(), 'checkpoint_v1.pth')
ckpt_v2_path = os.path.join(tempfile.gettempdir(), 'checkpoint_v2.pth')
# Save checkpoint
save_checkpoint(model_v1, ckpt_v1_path)
save_checkpoint(model_v2, ckpt_v2_path)
# test load v1 model
load_checkpoint(model_v2, ckpt_v1_path)
assert torch.allclose(model_v2.conv0.weight, model_v1_conv0_weight)
assert torch.allclose(model_v2.conv1.weight, model_v1_conv1_weight)
# test load v2 model
load_checkpoint(model_v2, ckpt_v2_path)
assert torch.allclose(model_v2.conv0.weight, model_v2_conv0_weight)
assert torch.allclose(model_v2.conv1.weight, model_v2_conv1_weight)
def test_load_classes_name():
import os
import tempfile
from mmcv.runner import load_checkpoint, save_checkpoint
checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
model = Model()
save_checkpoint(model, checkpoint_path)
checkpoint = load_checkpoint(model, checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
model.CLASSES = ('class1', 'class2')
save_checkpoint(model, checkpoint_path)
checkpoint = load_checkpoint(model, checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']
assert checkpoint['meta']['CLASSES'] == ('class1', 'class2')
model = Model()
wrapped_model = DDPWrapper(model)
save_checkpoint(wrapped_model, checkpoint_path)
checkpoint = load_checkpoint(wrapped_model, checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
wrapped_model.module.CLASSES = ('class1', 'class2')
save_checkpoint(wrapped_model, checkpoint_path)
checkpoint = load_checkpoint(wrapped_model, checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']
assert checkpoint['meta']['CLASSES'] == ('class1', 'class2')
# remove the temp file
os.remove(checkpoint_path)
def test_checkpoint_loader():
import os
import tempfile
from mmcv.runner import CheckpointLoader, _load_checkpoint, save_checkpoint
checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
model = Model()
save_checkpoint(model, checkpoint_path)
checkpoint = _load_checkpoint(checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
# remove the temp file
os.remove(checkpoint_path)
filenames = [
'http://xx.xx/xx.pth', 'https://xx.xx/xx.pth',
'modelzoo://xx.xx/xx.pth', 'torchvision://xx.xx/xx.pth',
'open-mmlab://xx.xx/xx.pth', 'openmmlab://xx.xx/xx.pth',
'mmcls://xx.xx/xx.pth', 'pavi://xx.xx/xx.pth', 's3://xx.xx/xx.pth',
'ss3://xx.xx/xx.pth', ' s3://xx.xx/xx.pth',
'open-mmlab:s3://xx.xx/xx.pth', 'openmmlab:s3://xx.xx/xx.pth',
'openmmlabs3://xx.xx/xx.pth', ':s3://xx.xx/xx.path'
]
fn_names = [
'load_from_http', 'load_from_http', 'load_from_torchvision',
'load_from_torchvision', 'load_from_openmmlab', 'load_from_openmmlab',
'load_from_mmcls', 'load_from_pavi', 'load_from_ceph',
'load_from_local', 'load_from_local', 'load_from_ceph',
'load_from_ceph', 'load_from_local', 'load_from_local'
]
for filename, fn_name in zip(filenames, fn_names):
loader = CheckpointLoader._get_checkpoint_loader(filename)
assert loader.__name__ == fn_name
@CheckpointLoader.register_scheme(prefixes='ftp://')
def load_from_ftp(filename, map_location):
return dict(filename=filename)
# test register_loader
filename = 'ftp://xx.xx/xx.pth'
loader = CheckpointLoader._get_checkpoint_loader(filename)
assert loader.__name__ == 'load_from_ftp'
def load_from_ftp1(filename, map_location):
return dict(filename=filename)
# test duplicate registered error
with pytest.raises(KeyError):
CheckpointLoader.register_scheme('ftp://', load_from_ftp1)
# test force param
CheckpointLoader.register_scheme('ftp://', load_from_ftp1, force=True)
checkpoint = CheckpointLoader.load_checkpoint(filename)
assert checkpoint['filename'] == filename
# test print function name
loader = CheckpointLoader._get_checkpoint_loader(filename)
assert loader.__name__ == 'load_from_ftp1'
# test sort
@CheckpointLoader.register_scheme(prefixes='a/b')
def load_from_ab(filename, map_location):
return dict(filename=filename)
@CheckpointLoader.register_scheme(prefixes='a/b/c')
def load_from_abc(filename, map_location):
return dict(filename=filename)
filename = 'a/b/c/d'
loader = CheckpointLoader._get_checkpoint_loader(filename)
assert loader.__name__ == 'load_from_abc'
def test_save_checkpoint(tmp_path):
model = Model()
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
# meta is not a dict
with pytest.raises(TypeError):
save_checkpoint(model, '/path/of/your/filename', meta='invalid type')
# 1. save to disk
filename = str(tmp_path / 'checkpoint1.pth')
save_checkpoint(model, filename)
filename = str(tmp_path / 'checkpoint2.pth')
save_checkpoint(model, filename, optimizer)
filename = str(tmp_path / 'checkpoint3.pth')
save_checkpoint(model, filename, meta={'test': 'test'})
filename = str(tmp_path / 'checkpoint4.pth')
save_checkpoint(model, filename, file_client_args={'backend': 'disk'})
# 2. save to petrel oss
with patch.object(PetrelBackend, 'put') as mock_method:
filename = 's3://path/of/your/checkpoint1.pth'
save_checkpoint(model, filename)
mock_method.assert_called()
with patch.object(PetrelBackend, 'put') as mock_method:
filename = 's3://path//of/your/checkpoint2.pth'
save_checkpoint(
model, filename, file_client_args={'backend': 'petrel'})
mock_method.assert_called()
def test_load_from_local():
import os
home_path = os.path.expanduser('~')
checkpoint_path = os.path.join(
home_path, 'dummy_checkpoint_used_to_test_load_from_local.pth')
model = Model()
save_checkpoint(model, checkpoint_path)
checkpoint = load_from_local(
'~/dummy_checkpoint_used_to_test_load_from_local.pth',
map_location=None)
assert_tensor_equal(checkpoint['state_dict']['block.conv.weight'],
model.block.conv.weight)
os.remove(checkpoint_path)
|