AiOS / detrsmpl /data /data_structures /multi_human_data.py
ttxskk
update
d7e58f0
raw
history blame contribute delete
18.5 kB
import logging
import pickle
from enum import Enum
from typing import Any, TypeVar, Union
import numpy as np
from mmcv.utils import print_log
from detrsmpl.data.data_structures.human_data import HumanData
from detrsmpl.utils.path_utils import (
Existence,
check_path_existence,
check_path_suffix,
)
# In T = TypeVar('T'), T can be anything.
# See definition of typing.TypeVar for details.
_HumanData = TypeVar('_HumanData')
_MultiHumanData_SUPPORTED_KEYS = HumanData.SUPPORTED_KEYS.copy()
_MultiHumanData_SUPPORTED_KEYS.update(
{'optional': {
'type': dict,
'slice_key': 'frame_range',
'dim': 0
}})
class _KeyCheck(Enum):
PASS = 0
WARN = 1
ERROR = 2
class MultiHumanData(HumanData):
SUPPORTED_KEYS = _MultiHumanData_SUPPORTED_KEYS
def __new__(cls: _HumanData, *args: Any, **kwargs: Any) -> _HumanData:
"""New an instance of HumanData.
Args:
cls (HumanData): HumanData class.
Returns:
HumanData: An instance of Hu
"""
ret_human_data = super().__new__(cls, args, kwargs)
setattr(ret_human_data, '__data_len__', -1)
setattr(ret_human_data, '__instance_num__', -1)
setattr(ret_human_data, '__key_strict__', False)
setattr(ret_human_data, '__keypoints_compressed__', False)
return ret_human_data
def load(self, npz_path: str):
"""Load data from npz_path and update them to self.
Args:
npz_path (str):
Path to a dumped npz file.
"""
supported_keys = self.__class__.SUPPORTED_KEYS
with np.load(npz_path, allow_pickle=True) as npz_file:
tmp_data_dict = dict(npz_file)
for key, value in list(tmp_data_dict.items()):
if isinstance(value, np.ndarray) and\
len(value.shape) == 0:
# value is not an ndarray before dump
value = value.item()
elif key in supported_keys and\
type(value) != supported_keys[key]['type']:
value = supported_keys[key]['type'](value)
if value is None:
tmp_data_dict.pop(key)
elif key == '__key_strict__' or \
key == '__data_len__' or\
key == '__instance_num__' or\
key == '__keypoints_compressed__':
self.__setattr__(key, value)
# pop the attributes to keep dict clean
tmp_data_dict.pop(key)
elif key == 'bbox_xywh' and value.shape[1] == 4:
value = np.hstack([value, np.ones([value.shape[0], 1])])
tmp_data_dict[key] = value
else:
tmp_data_dict[key] = value
self.update(tmp_data_dict)
self.__set_default_values__()
def dump(self, npz_path: str, overwrite: bool = True):
"""Dump keys and items to an npz file.
Args:
npz_path (str):
Path to a dumped npz file.
overwrite (bool, optional):
Whether to overwrite if there is already a file.
Defaults to True.
Raises:
ValueError:
npz_path does not end with '.npz'.
FileExistsError:
When overwrite is False and file exists.
"""
if not check_path_suffix(npz_path, ['.npz']):
raise ValueError('Not an npz file.')
if not overwrite:
if check_path_existence(npz_path, 'file') == Existence.FileExist:
raise FileExistsError
dict_to_dump = {
'__key_strict__': self.__key_strict__,
'__data_len__': self.__data_len__,
'__instance_num__': self.__instance_num__,
'__keypoints_compressed__': self.__keypoints_compressed__,
}
dict_to_dump.update(self)
np.savez_compressed(npz_path, **dict_to_dump)
def dump_by_pickle(self, pkl_path: str, overwrite: bool = True) -> None:
"""Dump keys and items to a pickle file. It's a secondary dump method,
when a HumanData instance is too large to be dumped by self.dump()
Args:
pkl_path (str):
Path to a dumped pickle file.
overwrite (bool, optional):
Whether to overwrite if there is already a file.
Defaults to True.
Raises:
ValueError:
npz_path does not end with '.pkl'.
FileExistsError:
When overwrite is False and file exists.
"""
if not check_path_suffix(pkl_path, ['.pkl']):
raise ValueError('Not an pkl file.')
if not overwrite:
if check_path_existence(pkl_path, 'file') == Existence.FileExist:
raise FileExistsError
dict_to_dump = {
'__key_strict__': self.__key_strict__,
'__data_len__': self.__data_len__,
'__instance_num__': self.__instance_num__,
'__keypoints_compressed__': self.__keypoints_compressed__,
}
dict_to_dump.update(self)
with open(pkl_path, 'wb') as f_writeb:
pickle.dump(dict_to_dump,
f_writeb,
protocol=pickle.HIGHEST_PROTOCOL)
def load_by_pickle(self, pkl_path: str) -> None:
"""Load data from pkl_path and update them to self.
When a HumanData Instance was dumped by
self.dump_by_pickle(), use this to load.
Args:
npz_path (str):
Path to a dumped npz file.
"""
with open(pkl_path, 'rb') as f_readb:
tmp_data_dict = pickle.load(f_readb)
for key, value in list(tmp_data_dict.items()):
if value is None:
tmp_data_dict.pop(key)
elif key == '__key_strict__' or \
key == '__data_len__' or\
key == '__instance_num__' or\
key == '__keypoints_compressed__':
self.__setattr__(key, value)
# pop the attributes to keep dict clean
tmp_data_dict.pop(key)
elif key == 'bbox_xywh' and value.shape[1] == 4:
value = np.hstack([value, np.ones([value.shape[0], 1])])
tmp_data_dict[key] = value
else:
tmp_data_dict[key] = value
self.update(tmp_data_dict)
self.__set_default_values__()
@property
def instance_num(self) -> int:
"""Get the human instance num of this MultiHumanData instance. In
MuliHumanData, an image may have multiple corresponding human
instances.
Returns:
int:
Number of human instance related to this instance.
"""
return self.__instance_num__
@instance_num.setter
def instance_num(self, value: int):
"""Set the human instance num of this MultiHumanData instance.
Args:
value (int):
Number of human instance related to this instance.
"""
self.__instance_num__ = value
def get_slice(self,
arg_0: int,
arg_1: Union[int, Any] = None,
step: int = 1) -> _HumanData:
"""Slice all sliceable values along major_dim dimension.
Args:
arg_0 (int):
When arg_1 is None, arg_0 is stop and start=0.
When arg_1 is not None, arg_0 is start.
arg_1 (Union[int, Any], optional):
None or where to stop.
Defaults to None.
step (int, optional):
Length of step. Defaults to 1.
Returns:
MultiHumanData:
A new MultiHumanData instance with sliced values.
"""
ret_human_data = \
MultiHumanData.new(key_strict=self.get_key_strict())
if arg_1 is None:
start = 0
stop = arg_0
else:
start = arg_0
stop = arg_1
slice_index = slice(start, stop, step)
dim_dict = self.__get_slice_dim__()
# frame_range = self.get_raw_value('optional')['frame_range']
for key, dim in dim_dict.items():
# primary index
if key == 'optional':
frame_range = None
else:
frame_range = self.get_raw_value('optional')['frame_range']
# keys not expected be sliced
if dim is None:
ret_human_data[key] = self[key]
elif isinstance(dim, dict):
value_dict = self.get_raw_value(key)
sliced_dict = {}
for sub_key in value_dict.keys():
sub_value = value_dict[sub_key]
if dim[sub_key] is None:
sliced_dict[sub_key] = sub_value
else:
sub_dim = dim[sub_key]
sliced_sub_value = \
MultiHumanData.__get_sliced_result__(
sub_value, sub_dim, slice_index, frame_range)
sliced_dict[sub_key] = sliced_sub_value
ret_human_data[key] = sliced_dict
else:
value = self[key]
sliced_value = \
MultiHumanData.__get_sliced_result__(
value, dim, slice_index, frame_range)
ret_human_data[key] = sliced_value
# check keypoints compressed
if self.check_keypoints_compressed():
ret_human_data.compress_keypoints_by_mask()
return ret_human_data
def __get_slice_dim__(self) -> dict:
"""For each key in this HumanData, get the dimension for slicing. 0 for
default, if no other value specified.
Returns:
dict:
Keys are self.keys().
Values indicate where to slice.
None for not expected to be sliced or
failed.
"""
supported_keys = self.__class__.SUPPORTED_KEYS
ret_dict = {}
for key in self.keys():
# keys not expected be sliced
if key in supported_keys and \
'dim' in supported_keys[key] and \
supported_keys[key]['dim'] is None:
ret_dict[key] = None
else:
value = self[key]
if isinstance(value, dict) and len(value) > 0:
ret_dict[key] = {}
for sub_key in value.keys():
try:
sub_value_len = len(value[sub_key])
if sub_value_len != self.instance_num and \
sub_value_len != self.data_len:
ret_dict[key][sub_key] = None
elif 'dim' in value:
ret_dict[key][sub_key] = value['dim']
else:
ret_dict[key][sub_key] = 0
except TypeError:
ret_dict[key][sub_key] = None
continue
# instance cannot be sliced without len method
try:
value_len = len(value)
except TypeError:
ret_dict[key] = None
continue
# slice on dim 0 by default
slice_dim = 0
if key in supported_keys and \
'dim' in supported_keys[key]:
slice_dim = \
supported_keys[key]['dim']
data_len = value_len if slice_dim == 0 \
else value.shape[slice_dim]
# dim not for slice
if data_len != self.__instance_num__:
ret_dict[key] = None
continue
else:
ret_dict[key] = slice_dim
return ret_dict
# TODO: to support cache
def __check_value_len__(self, key: Any, val: Any) -> bool:
"""Check whether the temporal length of val matches other values.
Args:
key (Any):
Key in MultiHumanData.
val (Any):
Value to the key.
Returns:
bool:
If temporal dim is defined and temporal length doesn't match,
return False.
Else return True.
"""
ret_bool = True
supported_keys = self.__class__.SUPPORTED_KEYS
# MultiHumanData
instance_num = 0
if key == 'optional' and \
'frame_range' in val:
for frame_range in val['frame_range']:
instance_num += (frame_range[-1] - frame_range[0])
if self.instance_num == -1:
# init instance_num for multi_human_data
self.instance_num = instance_num
elif self.instance_num != instance_num:
ret_bool = False
data_len = len(val['frame_range'])
if self.data_len == -1:
# init data_len
self.data_len = data_len
elif self.data_len == self.instance_num:
# update data_len
self.data_len = data_len
elif self.data_len != self.instance_num:
ret_bool = False
# check definition
elif key in supported_keys:
# check data length
if 'dim' in supported_keys[key] and \
supported_keys[key]['dim'] is not None:
val_slice_dim = supported_keys[key]['dim']
if supported_keys[key]['type'] == dict:
slice_key = supported_keys[key]['slice_key']
val_data_len = val[slice_key].shape[val_slice_dim]
else:
val_data_len = val.shape[val_slice_dim]
if self.instance_num < 0:
# Init instance_num for HumanData,
# which is equal to data_len.
self.instance_num = val_data_len
else:
# check if val_data_len matches recorded instance_num
if self.instance_num != val_data_len:
ret_bool = False
if self.data_len < 0:
# init data_len for HumanData, it's equal to
# instance_num.
# If it's MultiHumanData needs to be updated
self.data_len = val_data_len
if not ret_bool:
err_msg = 'Data length check Failed:\n'
err_msg += f'key={str(key)}\n'
if self.data_len != self.instance_num:
err_msg += f'val\'s instance_num={self.data_len}\n'
err_msg += f'expected instance_num={self.instance_num}\n'
print_log(msg=err_msg,
logger=self.__class__.logger,
level=logging.ERROR)
return ret_bool
def __set_default_values__(self) -> None:
"""For older versions of HumanData, call this method to apply missing
values (also attributes).
Note:
1. Older HumanData doesn't define `data_len`.
2. In the newer HumanData, `data_len` equals the `instances_num`.
3. In MultiHumanData, `instance_num` equals instances num,
and `data_len` equals frames num.
"""
supported_keys = self.__class__.SUPPORTED_KEYS
if self.instance_num == -1:
# the loaded file is not multi_human_data
for key in supported_keys:
if key in self and \
'dim' in supported_keys[key] and\
supported_keys[key]['dim'] is not None:
if 'slice_key' in supported_keys[key] and\
supported_keys[key]['type'] == dict:
sub_key = supported_keys[key]['slice_key']
slice_dim = supported_keys[key]['dim']
self.instance_num = self[key][sub_key].shape[slice_dim]
else:
slice_dim = supported_keys[key]['dim']
self.instance_num = self[key].shape[slice_dim]
# convert HumanData to MultiHumanData
self.data_len = self.instance_num
optional = {}
optional['frame_range'] = \
[[i, i + 1] for i in range(self.data_len)]
self['optional'] = optional
break
for key in list(self.keys()):
convention_key = f'{key}_convention'
if key.startswith('keypoints') and \
not key.endswith('_mask') and \
not key.endswith('_convention') and \
convention_key not in self:
self[convention_key] = 'human_data'
@classmethod
def __get_sliced_result__(
cls,
input_data: Union[np.ndarray, list, tuple],
slice_dim: int,
slice_range: slice,
frame_index: list = None) -> Union[np.ndarray, list, tuple]:
if frame_index is not None:
slice_data = []
for frame_range in frame_index[slice_range]:
slice_index = slice(frame_range[0], frame_range[-1], 1)
slice_result = \
HumanData.__get_sliced_result__(
input_data,
slice_dim,
slice_index)
for element in slice_result:
slice_data.append(element)
if isinstance(input_data, np.ndarray):
slice_data = np.array(slice_data)
else:
slice_data = type(input_data)(slice_data)
else:
# primary index
slice_data = \
HumanData.__get_sliced_result__(
input_data,
slice_dim,
slice_range)
return slice_data