Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
|
|
1 |
import os
|
2 |
import gc
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
import json
|
7 |
-
import spaces
|
8 |
import config
|
9 |
import utils
|
10 |
import logging
|
@@ -21,7 +21,7 @@ if not torch.cuda.is_available():
|
|
21 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
|
22 |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
24 |
-
CACHE_EXAMPLES =
|
25 |
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
|
26 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
27 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
@@ -30,11 +30,12 @@ OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
|
30 |
|
31 |
MODEL = os.getenv(
|
32 |
"MODEL",
|
33 |
-
"
|
34 |
)
|
35 |
|
36 |
torch.backends.cudnn.deterministic = True
|
37 |
torch.backends.cudnn.benchmark = False
|
|
|
38 |
|
39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
40 |
|
@@ -49,7 +50,7 @@ def load_pipeline(model_name):
|
|
49 |
if MODEL.endswith(".safetensors")
|
50 |
else StableDiffusionXLPipeline.from_pretrained
|
51 |
)
|
52 |
-
|
53 |
pipe = pipeline(
|
54 |
model_name,
|
55 |
vae=vae,
|
@@ -392,4 +393,4 @@ with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
|
|
392 |
)
|
393 |
|
394 |
if __name__ == "__main__":
|
395 |
-
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|
|
|
1 |
+
import spaces
|
2 |
import os
|
3 |
import gc
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
import json
|
|
|
8 |
import config
|
9 |
import utils
|
10 |
import logging
|
|
|
21 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
|
22 |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
24 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "0"
|
25 |
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
|
26 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
27 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
|
|
30 |
|
31 |
MODEL = os.getenv(
|
32 |
"MODEL",
|
33 |
+
"cagliostrolab/animagine-xl-3.1",
|
34 |
)
|
35 |
|
36 |
torch.backends.cudnn.deterministic = True
|
37 |
torch.backends.cudnn.benchmark = False
|
38 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
39 |
|
40 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
41 |
|
|
|
50 |
if MODEL.endswith(".safetensors")
|
51 |
else StableDiffusionXLPipeline.from_pretrained
|
52 |
)
|
53 |
+
|
54 |
pipe = pipeline(
|
55 |
model_name,
|
56 |
vae=vae,
|
|
|
393 |
)
|
394 |
|
395 |
if __name__ == "__main__":
|
396 |
+
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|