Spaces:
Runtime error
Runtime error
File size: 5,711 Bytes
c1bab10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# XTTSv2 Finetuning Guide for New Languages
This guide provides instructions for finetuning XTTSv2 on a new language, using Vietnamese (`vi`) as an example.
[UPDATE] A finetuned model for Vietnamese is now available at [anhnh2002/vnTTS](https://huggingface.co/anhnh2002/vnTTS) on Hugging Face
## Table of Contents
1. [Installation](#1-installation)
2. [Data Preparation](#2-data-preparation)
3. [Pretrained Model Download](#3-pretrained-model-download)
4. [Vocabulary Extension and Configuration Adjustment](#4-vocabulary-extension-and-configuration-adjustment)
5. [DVAE Finetuning (Optional)](#5-dvae-finetuning-optional)
6. [GPT Finetuning](#6-gpt-finetuning)
7. [Usage Example](#7-usage-example)
## 1. Installation
First, clone the repository and install the necessary dependencies:
```
git clone https://github.com/nguyenhoanganh2002/XTTSv2-Finetuning-for-New-Languages.git
cd XTTSv2-Finetuning-for-New-Languages
pip install -r requirements.txt
```
## 2. Data Preparation
Ensure your data is organized as follows:
```
project_root/
βββ datasets-1/
β βββ wavs/
β β βββ xxx.wav
β β βββ yyy.wav
β β βββ zzz.wav
β β βββ ...
β βββ metadata_train.csv
β βββ metadata_eval.csv
βββ datasets-2/
β βββ wavs/
β β βββ xxx.wav
β β βββ yyy.wav
β β βββ zzz.wav
β β βββ ...
β βββ metadata_train.csv
β βββ metadata_eval.csv
...
β
βββ recipes/
βββ scripts/
βββ TTS/
βββ README.md
```
Format your `metadata_train.csv` and `metadata_eval.csv` files as follows:
```
audio_file|text|speaker_name
wavs/xxx.wav|How do you do?|@X
wavs/yyy.wav|Nice to meet you.|@Y
wavs/zzz.wav|Good to see you.|@Z
```
## 3. Pretrained Model Download
Execute the following command to download the pretrained model:
```bash
python download_checkpoint.py --output_path checkpoints/
```
## 4. Vocabulary Extension and Configuration Adjustment
Extend the vocabulary and adjust the configuration with:
```bash
python extend_vocab_config.py --output_path=checkpoints/ --metadata_path datasets/metadata_train.csv --language vi --extended_vocab_size 2000
```
## 5. DVAE Finetuning (Optional)
To finetune the DVAE, run:
```bash
CUDA_VISIBLE_DEVICES=0 python train_dvae_xtts.py \
--output_path=checkpoints/ \
--train_csv_path=datasets/metadata_train.csv \
--eval_csv_path=datasets/metadata_eval.csv \
--language="vi" \
--num_epochs=5 \
--batch_size=512 \
--lr=5e-6
```
## 6. GPT Finetuning
For GPT finetuning, execute:
[OUTDATED]
```bash
CUDA_VISIBLE_DEVICES=0 python train_gpt_xtts.py \
--output_path=checkpoints/ \
--train_csv_path=datasets/metadata_train.csv \
--eval_csv_path=datasets/metadata_eval.csv \
--language="vi" \
--num_epochs=5 \
--batch_size=8 \
--grad_acumm=2 \
--max_text_length=250 \
--max_audio_length=255995 \
--weight_decay=1e-2 \
--lr=5e-6 \
--save_step=2000
```
[UPDATE - Supports training multiple datasets. Format metadatas parameter as follows: `path_to_train_csv_dataset-1,path_to_eval_csv_dataset-1,language_dataset-1 path_to_train_csv_dataset-2,path_to_eval_csv_dataset-2,language_dataset-2 ...`]
```bash
CUDA_VISIBLE_DEVICES=0 python train_gpt_xtts.py \
--output_path checkpoints/ \
--metadatas datasets-1/metadata_train.csv,datasets-1/metadata_eval.csv,vi datasets-2/metadata_train.csv,datasets-2/metadata_eval.csv,vi \
--num_epochs 5 \
--batch_size 8 \
--grad_acumm 4 \
--max_text_length 400 \
--max_audio_length 330750 \
--weight_decay 1e-2 \
--lr 5e-6 \
--save_step 50000
```
## 7. Usage Example
Here's a sample code snippet demonstrating how to use the finetuned model:
```python
import torch
import torchaudio
from tqdm import tqdm
from underthesea import sent_tokenize
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
# Device configuration
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# Model paths
xtts_checkpoint = "checkpoints/GPT_XTTS_FT-August-30-2024_08+19AM-6a6b942/best_model_99875.pth"
xtts_config = "checkpoints/GPT_XTTS_FT-August-30-2024_08+19AM-6a6b942/config.json"
xtts_vocab = "checkpoints/XTTS_v2.0_original_model_files/vocab.json"
# Load model
config = XttsConfig()
config.load_json(xtts_config)
XTTS_MODEL = Xtts.init_from_config(config)
XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
XTTS_MODEL.to(device)
print("Model loaded successfully!")
# Inference
tts_text = "Good to see you."
speaker_audio_file = "ref.wav"
lang = "vi"
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(
audio_path=speaker_audio_file,
gpt_cond_len=XTTS_MODEL.config.gpt_cond_len,
max_ref_length=XTTS_MODEL.config.max_ref_len,
sound_norm_refs=XTTS_MODEL.config.sound_norm_refs,
)
tts_texts = sent_tokenize(tts_text)
wav_chunks = []
for text in tqdm(tts_texts):
wav_chunk = XTTS_MODEL.inference(
text=text,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=0.1,
length_penalty=1.0,
repetition_penalty=10.0,
top_k=10,
top_p=0.3,
)
wav_chunks.append(torch.tensor(wav_chunk["wav"]))
out_wav = torch.cat(wav_chunks, dim=0).unsqueeze(0).cpu()
# Play audio (for Jupyter Notebook)
from IPython.display import Audio
Audio(out_wav, rate=24000)
```
Note: Finetuning the HiFiGAN decoder was attempted but resulted in worse performance. DVAE and GPT finetuning are sufficient for optimal results.
Update: If you have enough short texts in your datasets (about 20 hours), you do not need to finetune DVAE.
|