File size: 7,502 Bytes
c1bab10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch
# import wandb
from TTS.tts.layers.xtts.dvae import DiscreteVAE
from TTS.tts.layers.tortoise.arch_utils import TorchMelSpectrogram
from torch.utils.data import DataLoader
from TTS.tts.layers.xtts.trainer.dvae_dataset import DVAEDataset
from torch.optim import Adam
from torch.nn.utils import clip_grad_norm_

from tqdm import tqdm
from TTS.tts.datasets import load_tts_samples
from TTS.config.shared_configs import BaseDatasetConfig

from dataclasses import dataclass, field
from typing import Optional
import os
import datetime
from transformers import HfArgumentParser

@dataclass
class DVAETrainerArgs:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    output_path: str = field(
        metadata={"help": "Path to pretrained + checkpoint model"}
    )
    train_csv_path: str = field(
        metadata={"help": "Path to train metadata file"},
    )
    eval_csv_path: Optional[str] = field(
        default="",
        metadata={"help": "Path to eval metadata file"},
    )
    language: Optional[str] = field(
        default="en",
        metadata={"help": "The language you want to train (language in your dataset)"},
    )
    lr: Optional[float] = field(
        default=5e-6,
        metadata={"help": "Learning rate"},
    )
    num_epochs: Optional[int] = field(
        default=5,
    )
    batch_size: Optional[int] = field(
        default=512,
    )



def train(output_path, train_csv_path, eval_csv_path="", language="en", lr=5e-6, num_epochs=5, batch_size=512):
    dvae_pretrained = os.path.join(output_path, 'XTTS_v2.0_original_model_files/dvae.pth')
    mel_norm_file = os.path.join(output_path, 'XTTS_v2.0_original_model_files/mel_stats.pth')

    now = datetime.datetime.now()
    now_without_ms = now.replace(microsecond=0)
    # CHECKPOINTS_OUT_PATH = os.path.join(output_path, f"DVAE_checkpoint_{now_without_ms}/")
    # os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)

    config_dataset = BaseDatasetConfig(
        formatter="coqui",
        dataset_name="large",
        path=os.path.dirname(train_csv_path),
        meta_file_train=os.path.basename(train_csv_path),
        meta_file_val=os.path.basename(eval_csv_path),
        language=language,
    )

    # Add here the configs of the datasets
    DATASETS_CONFIG_LIST = [config_dataset]
    GRAD_CLIP_NORM = 0.5
    LEARNING_RATE = lr

    dvae = DiscreteVAE(
                channels=80,
                normalization=None,
                positional_dims=1,
                num_tokens=1024,
                codebook_dim=512,
                hidden_dim=512,
                num_resnet_blocks=3,
                kernel_size=3,
                num_layers=2,
                use_transposed_convs=False,
            )

    dvae.load_state_dict(torch.load(dvae_pretrained), strict=False)
    dvae.cuda()
    opt = Adam(dvae.parameters(), lr = LEARNING_RATE)
    torch_mel_spectrogram_dvae = TorchMelSpectrogram(
                mel_norm_file=mel_norm_file, sampling_rate=22050
            ).cuda()

    train_samples, eval_samples = load_tts_samples(
            DATASETS_CONFIG_LIST,
            eval_split=True,
            eval_split_max_size=256,
            eval_split_size=0.01,
        )

    eval_dataset = DVAEDataset(eval_samples, 22050, True, max_wav_len=15*22050)
    train_dataset = DVAEDataset(train_samples, 22050, False, max_wav_len=15*22050)

    eval_data_loader = DataLoader(
                        eval_dataset,
                        batch_size=batch_size,
                        shuffle=False,
                        drop_last=False,
                        collate_fn=eval_dataset.collate_fn,
                        num_workers=0,
                        pin_memory=False,
                    )

    train_data_loader = DataLoader(
                        train_dataset,
                        batch_size=batch_size,
                        shuffle=False,
                        drop_last=False,
                        collate_fn=train_dataset.collate_fn,
                        num_workers=4,
                        pin_memory=False,
                    )

    torch.set_grad_enabled(True)
    dvae.train()

    # wandb.init(project = 'train_dvae')
    # wandb.watch(dvae)

    def to_cuda(x: torch.Tensor) -> torch.Tensor:
        if x is None:
            return None
        if torch.is_tensor(x):
            x = x.contiguous()
            if torch.cuda.is_available():
                x = x.cuda(non_blocking=True)
        return x

    @torch.no_grad()
    def format_batch(batch):
        if isinstance(batch, dict):
            for k, v in batch.items():
                batch[k] = to_cuda(v)
        elif isinstance(batch, list):
            batch = [to_cuda(v) for v in batch]

        try:
            batch['mel'] = torch_mel_spectrogram_dvae(batch['wav'])
            # if the mel spectogram is not divisible by 4 then input.shape != output.shape 
            # for dvae
            remainder = batch['mel'].shape[-1] % 4
            if remainder:
                batch['mel'] = batch['mel'][:, :, :-remainder]
        except NotImplementedError:
            pass
        return batch

    best_loss = 1e6

    for i in range(num_epochs):
        dvae.train()
        for cur_step, batch in enumerate(train_data_loader):
            opt.zero_grad()
            batch = format_batch(batch)
            recon_loss, commitment_loss, out = dvae(batch['mel'])
            recon_loss = recon_loss.mean()
            total_loss = recon_loss + commitment_loss
            # print(f"commitment_loss shape: {commitment_loss.shape}")
            # print(f"recon_loss shape: {recon_loss.shape}")
            # print(f"total_loss shape: {total_loss.shape}")
            total_loss.backward()
            clip_grad_norm_(dvae.parameters(), GRAD_CLIP_NORM)
            opt.step()

            log = {'epoch': i,
                'cur_step': cur_step,
                'loss': total_loss.item(),
                'recon_loss': recon_loss.item(),
                'commit_loss': commitment_loss.item()}
            print(f"epoch: {i}", print(f"step: {cur_step}"), f'loss - {total_loss.item()}', f'recon_loss - {recon_loss.item()}', f'commit_loss - {commitment_loss.item()}')
            # wandb.log(log)
            torch.cuda.empty_cache()
        
        with torch.no_grad():
            dvae.eval()
            eval_loss = 0
            for cur_step, batch in enumerate(eval_data_loader):
                batch = format_batch(batch)
                recon_loss, commitment_loss, out = dvae(batch['mel'])
                recon_loss = recon_loss.mean()
                eval_loss += (recon_loss + commitment_loss).item()
            eval_loss = eval_loss/len(eval_data_loader)
            if eval_loss < best_loss:
                best_loss = eval_loss
                torch.save(dvae.state_dict(), dvae_pretrained)
            print(f"#######################################\nepoch: {i}\tEVAL loss: {eval_loss}\n#######################################")

    print(f'Checkpoint saved at {dvae_pretrained}')


if __name__ == "__main__":
    parser = HfArgumentParser(DVAETrainerArgs)

    args = parser.parse_args_into_dataclasses()[0]

    trainer_out_path = train(
        language=args.language,
        train_csv_path=args.train_csv_path,
        eval_csv_path=args.eval_csv_path,
        output_path=args.output_path,
        num_epochs=args.num_epochs,
        batch_size=args.batch_size,
        lr=args.lr
    )