Spaces:
Runtime error
Runtime error
File size: 7,502 Bytes
c1bab10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import torch
# import wandb
from TTS.tts.layers.xtts.dvae import DiscreteVAE
from TTS.tts.layers.tortoise.arch_utils import TorchMelSpectrogram
from torch.utils.data import DataLoader
from TTS.tts.layers.xtts.trainer.dvae_dataset import DVAEDataset
from torch.optim import Adam
from torch.nn.utils import clip_grad_norm_
from tqdm import tqdm
from TTS.tts.datasets import load_tts_samples
from TTS.config.shared_configs import BaseDatasetConfig
from dataclasses import dataclass, field
from typing import Optional
import os
import datetime
from transformers import HfArgumentParser
@dataclass
class DVAETrainerArgs:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
output_path: str = field(
metadata={"help": "Path to pretrained + checkpoint model"}
)
train_csv_path: str = field(
metadata={"help": "Path to train metadata file"},
)
eval_csv_path: Optional[str] = field(
default="",
metadata={"help": "Path to eval metadata file"},
)
language: Optional[str] = field(
default="en",
metadata={"help": "The language you want to train (language in your dataset)"},
)
lr: Optional[float] = field(
default=5e-6,
metadata={"help": "Learning rate"},
)
num_epochs: Optional[int] = field(
default=5,
)
batch_size: Optional[int] = field(
default=512,
)
def train(output_path, train_csv_path, eval_csv_path="", language="en", lr=5e-6, num_epochs=5, batch_size=512):
dvae_pretrained = os.path.join(output_path, 'XTTS_v2.0_original_model_files/dvae.pth')
mel_norm_file = os.path.join(output_path, 'XTTS_v2.0_original_model_files/mel_stats.pth')
now = datetime.datetime.now()
now_without_ms = now.replace(microsecond=0)
# CHECKPOINTS_OUT_PATH = os.path.join(output_path, f"DVAE_checkpoint_{now_without_ms}/")
# os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)
config_dataset = BaseDatasetConfig(
formatter="coqui",
dataset_name="large",
path=os.path.dirname(train_csv_path),
meta_file_train=os.path.basename(train_csv_path),
meta_file_val=os.path.basename(eval_csv_path),
language=language,
)
# Add here the configs of the datasets
DATASETS_CONFIG_LIST = [config_dataset]
GRAD_CLIP_NORM = 0.5
LEARNING_RATE = lr
dvae = DiscreteVAE(
channels=80,
normalization=None,
positional_dims=1,
num_tokens=1024,
codebook_dim=512,
hidden_dim=512,
num_resnet_blocks=3,
kernel_size=3,
num_layers=2,
use_transposed_convs=False,
)
dvae.load_state_dict(torch.load(dvae_pretrained), strict=False)
dvae.cuda()
opt = Adam(dvae.parameters(), lr = LEARNING_RATE)
torch_mel_spectrogram_dvae = TorchMelSpectrogram(
mel_norm_file=mel_norm_file, sampling_rate=22050
).cuda()
train_samples, eval_samples = load_tts_samples(
DATASETS_CONFIG_LIST,
eval_split=True,
eval_split_max_size=256,
eval_split_size=0.01,
)
eval_dataset = DVAEDataset(eval_samples, 22050, True, max_wav_len=15*22050)
train_dataset = DVAEDataset(train_samples, 22050, False, max_wav_len=15*22050)
eval_data_loader = DataLoader(
eval_dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
collate_fn=eval_dataset.collate_fn,
num_workers=0,
pin_memory=False,
)
train_data_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
collate_fn=train_dataset.collate_fn,
num_workers=4,
pin_memory=False,
)
torch.set_grad_enabled(True)
dvae.train()
# wandb.init(project = 'train_dvae')
# wandb.watch(dvae)
def to_cuda(x: torch.Tensor) -> torch.Tensor:
if x is None:
return None
if torch.is_tensor(x):
x = x.contiguous()
if torch.cuda.is_available():
x = x.cuda(non_blocking=True)
return x
@torch.no_grad()
def format_batch(batch):
if isinstance(batch, dict):
for k, v in batch.items():
batch[k] = to_cuda(v)
elif isinstance(batch, list):
batch = [to_cuda(v) for v in batch]
try:
batch['mel'] = torch_mel_spectrogram_dvae(batch['wav'])
# if the mel spectogram is not divisible by 4 then input.shape != output.shape
# for dvae
remainder = batch['mel'].shape[-1] % 4
if remainder:
batch['mel'] = batch['mel'][:, :, :-remainder]
except NotImplementedError:
pass
return batch
best_loss = 1e6
for i in range(num_epochs):
dvae.train()
for cur_step, batch in enumerate(train_data_loader):
opt.zero_grad()
batch = format_batch(batch)
recon_loss, commitment_loss, out = dvae(batch['mel'])
recon_loss = recon_loss.mean()
total_loss = recon_loss + commitment_loss
# print(f"commitment_loss shape: {commitment_loss.shape}")
# print(f"recon_loss shape: {recon_loss.shape}")
# print(f"total_loss shape: {total_loss.shape}")
total_loss.backward()
clip_grad_norm_(dvae.parameters(), GRAD_CLIP_NORM)
opt.step()
log = {'epoch': i,
'cur_step': cur_step,
'loss': total_loss.item(),
'recon_loss': recon_loss.item(),
'commit_loss': commitment_loss.item()}
print(f"epoch: {i}", print(f"step: {cur_step}"), f'loss - {total_loss.item()}', f'recon_loss - {recon_loss.item()}', f'commit_loss - {commitment_loss.item()}')
# wandb.log(log)
torch.cuda.empty_cache()
with torch.no_grad():
dvae.eval()
eval_loss = 0
for cur_step, batch in enumerate(eval_data_loader):
batch = format_batch(batch)
recon_loss, commitment_loss, out = dvae(batch['mel'])
recon_loss = recon_loss.mean()
eval_loss += (recon_loss + commitment_loss).item()
eval_loss = eval_loss/len(eval_data_loader)
if eval_loss < best_loss:
best_loss = eval_loss
torch.save(dvae.state_dict(), dvae_pretrained)
print(f"#######################################\nepoch: {i}\tEVAL loss: {eval_loss}\n#######################################")
print(f'Checkpoint saved at {dvae_pretrained}')
if __name__ == "__main__":
parser = HfArgumentParser(DVAETrainerArgs)
args = parser.parse_args_into_dataclasses()[0]
trainer_out_path = train(
language=args.language,
train_csv_path=args.train_csv_path,
eval_csv_path=args.eval_csv_path,
output_path=args.output_path,
num_epochs=args.num_epochs,
batch_size=args.batch_size,
lr=args.lr
) |