Spaces:
Sleeping
Sleeping
Phạm Anh Tuấn
commited on
Commit
·
1b95adc
1
Parent(s):
be990ca
update bar chart
Browse files
app.py
CHANGED
@@ -5,42 +5,48 @@ import matplotlib.pyplot as plt
|
|
5 |
import seaborn as sns
|
6 |
from wordcloud import WordCloud
|
7 |
|
|
|
8 |
# Define the Streamlit app
|
9 |
-
st.title("
|
|
|
10 |
|
11 |
# File upload and processing
|
12 |
uploaded_file = st.file_uploader("Upload JSON File", type=["json"])
|
13 |
if uploaded_file:
|
14 |
loaded_dict = json.load(uploaded_file)
|
15 |
df = pd.DataFrame(loaded_dict)
|
16 |
-
st.subheader(
|
17 |
st.write(df)
|
18 |
|
19 |
-
# Group by and aggregate data
|
20 |
-
grouped = df.groupby('A').agg({'S': ['count', lambda x: (x == 'great').sum(), lambda x: (x == 'ok').sum(), lambda x: (x == 'bad').sum()]})
|
21 |
-
grouped.columns = grouped.columns.map('_'.join)
|
22 |
-
grouped = grouped.reset_index()
|
23 |
-
grouped = grouped.rename(columns={'A': 'Aspect', 'S_count': 'Freq', 'S_<lambda_0>': 'Great', 'S_<lambda_1>': 'Ok', 'S_<lambda_2>': 'Bad'})
|
24 |
-
|
25 |
-
st.subheader("Top Aspects by Frequency")
|
26 |
-
st.write(grouped.sort_values(by="Freq", ascending=False).head(5))
|
27 |
-
|
28 |
# Sentiment Distribution Chart
|
29 |
-
|
30 |
-
|
31 |
|
32 |
st.subheader("Sentiment Distribution")
|
33 |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 6))
|
34 |
|
35 |
-
ax1.pie(
|
36 |
ax1.axis('equal')
|
37 |
ax1.set_title("Sentiment Distribution %")
|
38 |
|
39 |
-
sns.countplot(x="S", data=df, palette=palette_color, ax=ax2)
|
|
|
40 |
ax2.set_title("Sentiment Distribution Counts")
|
41 |
-
|
|
|
|
|
|
|
42 |
st.pyplot(fig)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# Word Cloud
|
45 |
aspect_terms = " ".join(df["A"])
|
46 |
wordcloud = WordCloud(
|
|
|
5 |
import seaborn as sns
|
6 |
from wordcloud import WordCloud
|
7 |
|
8 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
9 |
# Define the Streamlit app
|
10 |
+
st.title("Aspected-Based Sentiment Analysis with MVP")
|
11 |
+
palette_color = sns.color_palette('Set1')
|
12 |
|
13 |
# File upload and processing
|
14 |
uploaded_file = st.file_uploader("Upload JSON File", type=["json"])
|
15 |
if uploaded_file:
|
16 |
loaded_dict = json.load(uploaded_file)
|
17 |
df = pd.DataFrame(loaded_dict)
|
18 |
+
st.subheader(len(df)," sentiment tuples was detected")
|
19 |
st.write(df)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Sentiment Distribution Chart
|
22 |
+
sentiment_distribution_perc = df["S"].value_counts(normalize=True) * 100
|
23 |
+
sentiment_distribution = df["S"].value_counts()
|
24 |
|
25 |
st.subheader("Sentiment Distribution")
|
26 |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 6))
|
27 |
|
28 |
+
ax1.pie(sentiment_distribution_perc, labels=sentiment_distribution_perc.index, autopct='%1.1f%%', startangle=140,colors=palette_color)
|
29 |
ax1.axis('equal')
|
30 |
ax1.set_title("Sentiment Distribution %")
|
31 |
|
32 |
+
# sns.countplot(x="S", data=df, palette=palette_color, ax=ax2)
|
33 |
+
|
34 |
ax2.set_title("Sentiment Distribution Counts")
|
35 |
+
ax2.bar(sentiment_distribution.index, sentiment_distribution.values, color=palette_color)
|
36 |
+
# ax2.xlabel("Sentiment")
|
37 |
+
# ax2.ylabel("Times")
|
38 |
+
ax2.xticks(rotation=0) # Rotate x-axis labels if needed
|
39 |
st.pyplot(fig)
|
40 |
|
41 |
+
# Group by and aggregate data
|
42 |
+
grouped = df.groupby('A').agg({'S': ['count', lambda x: (x == 'great').sum(), lambda x: (x == 'ok').sum(), lambda x: (x == 'bad').sum()]})
|
43 |
+
grouped.columns = grouped.columns.map('_'.join)
|
44 |
+
grouped = grouped.reset_index()
|
45 |
+
grouped = grouped.rename(columns={'A': 'Aspect', 'S_count': 'Freq', 'S_<lambda_0>': 'Great', 'S_<lambda_1>': 'Ok', 'S_<lambda_2>': 'Bad'})
|
46 |
+
|
47 |
+
st.subheader("Top 5 Most Mentioned Product Apsects")
|
48 |
+
st.write(grouped.sort_values(by="Freq", ascending=False).head(5))
|
49 |
+
|
50 |
# Word Cloud
|
51 |
aspect_terms = " ".join(df["A"])
|
52 |
wordcloud = WordCloud(
|