tulsi0897 commited on
Commit
b1e8b65
Β·
1 Parent(s): 01f17c2

adding main, model.pth and input files

Browse files
Files changed (7) hide show
  1. README.md +4 -4
  2. app.py +54 -0
  3. cat.jpg +0 -0
  4. dog.jpg +0 -0
  5. model.pth +3 -0
  6. requirements.txt +6 -0
  7. resnet.py +76 -0
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- title: Image Classification
3
- emoji: 🐠
4
- colorFrom: pink
5
- colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 3.39.0
8
  app_file: app.py
 
1
  ---
2
+ title: Demo1
3
+ emoji: πŸš€
4
+ colorFrom: gray
5
+ colorTo: gray
6
  sdk: gradio
7
  sdk_version: 3.39.0
8
  app_file: app.py
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch, torchvision
2
+ from torchvision import transforms
3
+ import numpy as np
4
+ import gradio as gr
5
+ from PIL import Image
6
+ from pytorch_grad_cam import GradCAM
7
+ from pytorch_grad_cam.utils.image import show_cam_on_image
8
+ from resnet import ResNet18
9
+ import gradio as gr
10
+
11
+ model = ResNet18()
12
+ model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False)
13
+
14
+ inv_normalize = transforms.Normalize(
15
+ mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
16
+ std=[1/0.23, 1/0.23, 1/0.23]
17
+ )
18
+ classes = ('plane', 'car', 'bird', 'cat', 'deer',
19
+ 'dog', 'frog', 'horse', 'ship', 'truck')
20
+
21
+ def inference(input_img, transparency = 0.5, target_layer_number = -1):
22
+ transform = transforms.ToTensor()
23
+ org_img = input_img
24
+ input_img = transform(input_img)
25
+ input_img = input_img
26
+ input_img = input_img.unsqueeze(0)
27
+ outputs = model(input_img)
28
+ softmax = torch.nn.Softmax(dim=0)
29
+ o = softmax(outputs.flatten())
30
+ confidences = {classes[i]: float(o[i]) for i in range(10)}
31
+ _, prediction = torch.max(outputs, 1)
32
+ target_layers = [model.layer2[target_layer_number]]
33
+ cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
34
+ grayscale_cam = cam(input_tensor=input_img, targets=None)
35
+ grayscale_cam = grayscale_cam[0, :]
36
+ img = input_img.squeeze(0)
37
+ img = inv_normalize(img)
38
+ rgb_img = np.transpose(img, (1, 2, 0))
39
+ rgb_img = rgb_img.numpy()
40
+ visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
41
+ return confidences, visualization
42
+
43
+ title = "CIFAR10 trained on ResNet18 Model with GradCAM"
44
+ description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
45
+ examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
46
+ demo = gr.Interface(
47
+ inference,
48
+ inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")],
49
+ outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)],
50
+ title = title,
51
+ description = description,
52
+ examples = examples,
53
+ )
54
+ demo.launch()
cat.jpg ADDED
dog.jpg ADDED
model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cf9335b863d513421b678d5b93078c44eca26d4d1a7afdd7411cc27d4b907b9
3
+ size 133
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ torchvision
3
+ torch-lr-finder
4
+ grad-cam
5
+ pillow
6
+ numpy
resnet.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ResNet in PyTorch.
3
+ For Pre-activation ResNet, see 'preact_resnet.py'.
4
+
5
+ Reference:
6
+ [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
7
+ Deep Residual Learning for Image Recognition. arXiv:1512.03385
8
+ """
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+
12
+
13
+ class BasicBlock(nn.Module):
14
+ expansion = 1
15
+
16
+ def __init__(self, in_planes, planes, stride=1):
17
+ super(BasicBlock, self).__init__()
18
+ self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
19
+ self.bn1 = nn.BatchNorm2d(planes)
20
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
21
+ self.bn2 = nn.BatchNorm2d(planes)
22
+
23
+ self.shortcut = nn.Sequential()
24
+ if stride != 1 or in_planes != self.expansion*planes:
25
+ self.shortcut = nn.Sequential(
26
+ nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
27
+ nn.BatchNorm2d(self.expansion*planes)
28
+ )
29
+
30
+ def forward(self, x):
31
+ out = F.relu(self.bn1(self.conv1(x)))
32
+ out = self.bn2(self.conv2(out))
33
+ out += self.shortcut(x)
34
+ out = F.relu(out)
35
+ return out
36
+
37
+
38
+ class ResNet(nn.Module):
39
+ def __init__(self, block, num_blocks, num_classes=10):
40
+ super(ResNet, self).__init__()
41
+ self.in_planes = 64
42
+
43
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
44
+ self.bn1 = nn.BatchNorm2d(64)
45
+ self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
46
+ self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
47
+ self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
48
+ self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
49
+ self.linear = nn.Linear(512*block.expansion, num_classes)
50
+
51
+ def _make_layer(self, block, planes, num_blocks, stride):
52
+ strides = [stride] + [1]*(num_blocks-1)
53
+ layers = []
54
+ for stride in strides:
55
+ layers.append(block(self.in_planes, planes, stride))
56
+ self.in_planes = planes * block.expansion
57
+ return nn.Sequential(*layers)
58
+
59
+ def forward(self, x):
60
+ out = F.relu(self.bn1(self.conv1(x)))
61
+ out = self.layer1(out)
62
+ out = self.layer2(out)
63
+ out = self.layer3(out)
64
+ out = self.layer4(out)
65
+ out = F.avg_pool2d(out, 4)
66
+ out = out.view(out.size(0), -1)
67
+ out = self.linear(out)
68
+ return out
69
+
70
+
71
+ def ResNet18():
72
+ return ResNet(BasicBlock, [2, 2, 2, 2])
73
+
74
+
75
+ def ResNet34():
76
+ return ResNet(BasicBlock, [3, 4, 6, 3])