Spaces:
Running
Running
Commit
·
2360fe8
1
Parent(s):
cc9af23
yolov8 space
Browse files
app.py
CHANGED
@@ -1,7 +1,146 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from ultralytics import YOLO
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from math import atan2, cos, sin, sqrt, pi
|
7 |
|
8 |
+
# Images
|
9 |
+
torch.hub.download_url_to_file('https://github.com/lucarei/orientation-detection-robotic-grasping/assets/22428774/cefd9731-c57c-428b-b401-fd54a8bd0a95', 'highway.jpg')
|
10 |
+
torch.hub.download_url_to_file('https://github.com/lucarei/orientation-detection-robotic-grasping/assets/22428774/acbad76a-33f9-4028-b012-4ece5998c272', 'highway1.jpg')
|
11 |
+
torch.hub.download_url_to_file('https://github.com/lucarei/orientation-detection-robotic-grasping/assets/22428774/7fa95f52-3c8b-4ea0-8bca-7374792a4c55', 'small-vehicles1.jpeg')
|
12 |
|
13 |
+
def drawAxis(img, p_, q_, color, scale):
|
14 |
+
p = list(p_)
|
15 |
+
q = list(q_)
|
16 |
+
|
17 |
+
## [visualization1]
|
18 |
+
angle = atan2(p[1] - q[1], p[0] - q[0]) # angle in radians
|
19 |
+
hypotenuse = sqrt((p[1] - q[1]) * (p[1] - q[1]) + (p[0] - q[0]) * (p[0] - q[0]))
|
20 |
+
|
21 |
+
# Here we lengthen the arrow by a factor of scale
|
22 |
+
q[0] = p[0] - scale * hypotenuse * cos(angle)
|
23 |
+
q[1] = p[1] - scale * hypotenuse * sin(angle)
|
24 |
+
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
|
25 |
+
|
26 |
+
# create the arrow hooks
|
27 |
+
p[0] = q[0] + 9 * cos(angle + pi / 4)
|
28 |
+
p[1] = q[1] + 9 * sin(angle + pi / 4)
|
29 |
+
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
|
30 |
+
|
31 |
+
p[0] = q[0] + 9 * cos(angle - pi / 4)
|
32 |
+
p[1] = q[1] + 9 * sin(angle - pi / 4)
|
33 |
+
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
|
34 |
+
## [visualization1]
|
35 |
+
|
36 |
+
|
37 |
+
def getOrientation(pts, img):
|
38 |
+
## [pca]
|
39 |
+
# Construct a buffer used by the pca analysis
|
40 |
+
sz = len(pts)
|
41 |
+
data_pts = np.empty((sz, 2), dtype=np.float64)
|
42 |
+
for i in range(data_pts.shape[0]):
|
43 |
+
data_pts[i,0] = pts[i,0,0]
|
44 |
+
data_pts[i,1] = pts[i,0,1]
|
45 |
+
|
46 |
+
# Perform PCA analysis
|
47 |
+
mean = np.empty((0))
|
48 |
+
mean, eigenvectors, eigenvalues = cv2.PCACompute2(data_pts, mean)
|
49 |
+
|
50 |
+
# Store the center of the object
|
51 |
+
cntr = (int(mean[0,0]), int(mean[0,1]))
|
52 |
+
## [pca]
|
53 |
+
|
54 |
+
## [visualization]
|
55 |
+
# Draw the principal components
|
56 |
+
cv2.circle(img, cntr, 3, (255, 0, 255), 10)
|
57 |
+
p1 = (cntr[0] + 0.02 * eigenvectors[0,0] * eigenvalues[0,0], cntr[1] + 0.02 * eigenvectors[0,1] * eigenvalues[0,0])
|
58 |
+
p2 = (cntr[0] - 0.02 * eigenvectors[1,0] * eigenvalues[1,0], cntr[1] - 0.02 * eigenvectors[1,1] * eigenvalues[1,0])
|
59 |
+
drawAxis(img, cntr, p1, (255, 255, 0), 1)
|
60 |
+
drawAxis(img, cntr, p2, (0, 0, 255), 3)
|
61 |
+
|
62 |
+
angle = atan2(eigenvectors[0,1], eigenvectors[0,0]) # orientation in radians
|
63 |
+
## [visualization]
|
64 |
+
angle_deg = -(int(np.rad2deg(angle))-180) % 180
|
65 |
+
|
66 |
+
# Label with the rotation angle
|
67 |
+
label = " Rotation Angle: " + str(int(np.rad2deg(angle))) + " degrees"
|
68 |
+
textbox = cv2.rectangle(img, (cntr[0], cntr[1]-25), (cntr[0] + 250, cntr[1] + 10), (255,255,255), -1)
|
69 |
+
cv2.putText(img, label, (cntr[0], cntr[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv2.LINE_AA)
|
70 |
+
|
71 |
+
return angle_deg
|
72 |
+
|
73 |
+
def yolov8_inference(
|
74 |
+
image: gr.inputs.Image = None,
|
75 |
+
model_path: gr.inputs.Dropdown = None,
|
76 |
+
image_size: gr.inputs.Slider = 640,
|
77 |
+
conf_threshold: gr.inputs.Slider = 0.25,
|
78 |
+
iou_threshold: gr.inputs.Slider = 0.45,
|
79 |
+
):
|
80 |
+
"""
|
81 |
+
YOLOv8 inference function
|
82 |
+
Args:
|
83 |
+
image: Input image
|
84 |
+
model_path: Path to the model
|
85 |
+
image_size: Image size
|
86 |
+
conf_threshold: Confidence threshold
|
87 |
+
iou_threshold: IOU threshold
|
88 |
+
Returns:
|
89 |
+
Rendered image
|
90 |
+
"""
|
91 |
+
model = YOLO(model_path)
|
92 |
+
model.conf = conf_threshold
|
93 |
+
model.iou = iou_threshold
|
94 |
+
#read image
|
95 |
+
image = cv2.imread(image)
|
96 |
+
#resize image (optional)
|
97 |
+
img_res_toshow = cv2.resize(image, None, fx= 0.5, fy= 0.5, interpolation= cv2.INTER_LINEAR)
|
98 |
+
height=img_res_toshow.shape[0]
|
99 |
+
width=img_res_toshow.shape[1]
|
100 |
+
dim=(width,height)
|
101 |
+
results = model.predict(image, imgsz=image_size, return_outputs=True)
|
102 |
+
#obtain BW image
|
103 |
+
bw=(results[0].masks.masks[0].cpu().numpy() * 255).astype("uint8")
|
104 |
+
#BW image with same dimention of initial image
|
105 |
+
bw=cv2.resize(bw, dim, interpolation = cv2.INTER_AREA)
|
106 |
+
img=img_res_toshow
|
107 |
+
contours, _ = cv2.findContours(bw, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
|
108 |
+
for i, c in enumerate(contours):
|
109 |
+
# Calculate the area of each contour
|
110 |
+
area = cv2.contourArea(c)
|
111 |
+
|
112 |
+
# Ignore contours that are too small or too large
|
113 |
+
if area < 3700 or 100000 < area:
|
114 |
+
continue
|
115 |
+
|
116 |
+
# Draw each contour only for visualisation purposes
|
117 |
+
cv2.drawContours(img, contours, i, (0, 0, 255), 2)
|
118 |
+
|
119 |
+
# Find the orientation of each shape
|
120 |
+
print(getOrientation(c, img))
|
121 |
+
|
122 |
+
return img
|
123 |
+
|
124 |
+
inputs = [
|
125 |
+
gr.inputs.Image(type="filepath", label="Input Image"),
|
126 |
+
gr.inputs.Dropdown(["kadirnar/yolov8n-v8.0", "kadirnar/yolov8m-v8.0", "kadirnar/yolov8l-v8.0", "kadirnar/yolov8x-v8.0", "kadirnar/yolov8x6-v8.0"],
|
127 |
+
default="kadirnar/yolov8m-v8.0", label="Model"),
|
128 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
129 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
130 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
131 |
+
]
|
132 |
+
|
133 |
+
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
134 |
+
title = "Ultralytics YOLOv8: State-of-the-Art YOLO Models"
|
135 |
+
|
136 |
+
examples = [['highway.jpg', 'kadirnar/yolov8m-v8.0', 640, 0.25, 0.45], ['highway1.jpg', 'kadirnar/yolov8l-v8.0', 640, 0.25, 0.45], ['small-vehicles1.jpeg', 'kadirnar/yolov8x-v8.0', 1280, 0.25, 0.45]]
|
137 |
+
demo_app = gr.Interface(
|
138 |
+
fn=yolov8_inference,
|
139 |
+
inputs=inputs,
|
140 |
+
outputs=outputs,
|
141 |
+
title=title,
|
142 |
+
examples=examples,
|
143 |
+
cache_examples=True,
|
144 |
+
theme='huggingface',
|
145 |
+
)
|
146 |
+
demo_app.launch(debug=True, enable_queue=True)
|