turhancan97 commited on
Commit
79d256d
·
1 Parent(s): 66d0d08
Files changed (2) hide show
  1. app.py +97 -35
  2. requirements.txt +3 -5
app.py CHANGED
@@ -1,13 +1,74 @@
1
  import gradio as gr
2
  import torch
3
- from sahi.prediction import ObjectPrediction
4
- from sahi.utils.cv import visualize_object_predictions, read_image
5
- from ultralyticsplus import YOLO
 
6
 
7
  # Images
8
- torch.hub.download_url_to_file('https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg', 'highway.jpg')
9
- torch.hub.download_url_to_file('https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg', 'highway1.jpg')
10
- torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  def yolov8_inference(
13
  image: gr.inputs.Image = None,
@@ -30,39 +91,40 @@ def yolov8_inference(
30
  model = YOLO(model_path)
31
  model.conf = conf_threshold
32
  model.iou = iou_threshold
 
 
 
 
 
 
 
33
  results = model.predict(image, imgsz=image_size, return_outputs=True)
34
- object_prediction_list = []
35
- for _, image_results in enumerate(results):
36
- if len(image_results)!=0:
37
- image_predictions_in_xyxy_format = image_results['det']
38
- for pred in image_predictions_in_xyxy_format:
39
- x1, y1, x2, y2 = (
40
- int(pred[0]),
41
- int(pred[1]),
42
- int(pred[2]),
43
- int(pred[3]),
44
- )
45
- bbox = [x1, y1, x2, y2]
46
- score = pred[4]
47
- category_name = model.model.names[int(pred[5])]
48
- category_id = pred[5]
49
- object_prediction = ObjectPrediction(
50
- bbox=bbox,
51
- category_id=int(category_id),
52
- score=score,
53
- category_name=category_name,
54
- )
55
- object_prediction_list.append(object_prediction)
56
-
57
- image = read_image(image)
58
- output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
59
- return output_image['image']
60
 
 
61
 
62
  inputs = [
63
  gr.inputs.Image(type="filepath", label="Input Image"),
64
- gr.inputs.Dropdown(["kadirnar/yolov8n-v8.0", "kadirnar/yolov8m-v8.0", "kadirnar/yolov8l-v8.0", "kadirnar/yolov8x-v8.0", "kadirnar/yolov8x6-v8.0"],
65
- default="kadirnar/yolov8m-v8.0", label="Model"),
66
  gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
67
  gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
68
  gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
@@ -71,7 +133,7 @@ inputs = [
71
  outputs = gr.outputs.Image(type="filepath", label="Output Image")
72
  title = "Ultralytics YOLOv8: State-of-the-Art YOLO Models"
73
 
74
- examples = [['highway.jpg', 'kadirnar/yolov8m-v8.0', 640, 0.25, 0.45], ['highway1.jpg', 'kadirnar/yolov8l-v8.0', 640, 0.25, 0.45], ['small-vehicles1.jpeg', 'kadirnar/yolov8x-v8.0', 1280, 0.25, 0.45]]
75
  demo_app = gr.Interface(
76
  fn=yolov8_inference,
77
  inputs=inputs,
 
1
  import gradio as gr
2
  import torch
3
+ from ultralytics import YOLO
4
+ import cv2
5
+ import numpy as np
6
+ from math import atan2, cos, sin, sqrt, pi
7
 
8
  # Images
9
+ torch.hub.download_url_to_file('https://github.com/lucarei/orientation-detection-robotic-grasping/assets/22428774/cefd9731-c57c-428b-b401-fd54a8bd0a95', 'highway.jpg')
10
+ torch.hub.download_url_to_file('https://github.com/lucarei/orientation-detection-robotic-grasping/assets/22428774/acbad76a-33f9-4028-b012-4ece5998c272', 'highway1.jpg')
11
+ torch.hub.download_url_to_file('https://github.com/lucarei/orientation-detection-robotic-grasping/assets/22428774/7fa95f52-3c8b-4ea0-8bca-7374792a4c55', 'small-vehicles1.jpeg')
12
+
13
+ def drawAxis(img, p_, q_, color, scale):
14
+ p = list(p_)
15
+ q = list(q_)
16
+
17
+ ## [visualization1]
18
+ angle = atan2(p[1] - q[1], p[0] - q[0]) # angle in radians
19
+ hypotenuse = sqrt((p[1] - q[1]) * (p[1] - q[1]) + (p[0] - q[0]) * (p[0] - q[0]))
20
+
21
+ # Here we lengthen the arrow by a factor of scale
22
+ q[0] = p[0] - scale * hypotenuse * cos(angle)
23
+ q[1] = p[1] - scale * hypotenuse * sin(angle)
24
+ cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
25
+
26
+ # create the arrow hooks
27
+ p[0] = q[0] + 9 * cos(angle + pi / 4)
28
+ p[1] = q[1] + 9 * sin(angle + pi / 4)
29
+ cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
30
+
31
+ p[0] = q[0] + 9 * cos(angle - pi / 4)
32
+ p[1] = q[1] + 9 * sin(angle - pi / 4)
33
+ cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
34
+ ## [visualization1]
35
+
36
+
37
+ def getOrientation(pts, img):
38
+ ## [pca]
39
+ # Construct a buffer used by the pca analysis
40
+ sz = len(pts)
41
+ data_pts = np.empty((sz, 2), dtype=np.float64)
42
+ for i in range(data_pts.shape[0]):
43
+ data_pts[i,0] = pts[i,0,0]
44
+ data_pts[i,1] = pts[i,0,1]
45
+
46
+ # Perform PCA analysis
47
+ mean = np.empty((0))
48
+ mean, eigenvectors, eigenvalues = cv2.PCACompute2(data_pts, mean)
49
+
50
+ # Store the center of the object
51
+ cntr = (int(mean[0,0]), int(mean[0,1]))
52
+ ## [pca]
53
+
54
+ ## [visualization]
55
+ # Draw the principal components
56
+ cv2.circle(img, cntr, 3, (255, 0, 255), 10)
57
+ p1 = (cntr[0] + 0.02 * eigenvectors[0,0] * eigenvalues[0,0], cntr[1] + 0.02 * eigenvectors[0,1] * eigenvalues[0,0])
58
+ p2 = (cntr[0] - 0.02 * eigenvectors[1,0] * eigenvalues[1,0], cntr[1] - 0.02 * eigenvectors[1,1] * eigenvalues[1,0])
59
+ drawAxis(img, cntr, p1, (255, 255, 0), 1)
60
+ drawAxis(img, cntr, p2, (0, 0, 255), 3)
61
+
62
+ angle = atan2(eigenvectors[0,1], eigenvectors[0,0]) # orientation in radians
63
+ ## [visualization]
64
+ angle_deg = -(int(np.rad2deg(angle))-180) % 180
65
+
66
+ # Label with the rotation angle
67
+ label = " Rotation Angle: " + str(int(np.rad2deg(angle))) + " degrees"
68
+ textbox = cv2.rectangle(img, (cntr[0], cntr[1]-25), (cntr[0] + 250, cntr[1] + 10), (255,255,255), -1)
69
+ cv2.putText(img, label, (cntr[0], cntr[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv2.LINE_AA)
70
+
71
+ return angle_deg
72
 
73
  def yolov8_inference(
74
  image: gr.inputs.Image = None,
 
91
  model = YOLO(model_path)
92
  model.conf = conf_threshold
93
  model.iou = iou_threshold
94
+ #read image
95
+ image = cv2.imread(image)
96
+ #resize image (optional)
97
+ img_res_toshow = cv2.resize(image, None, fx= 0.5, fy= 0.5, interpolation= cv2.INTER_LINEAR)
98
+ height=img_res_toshow.shape[0]
99
+ width=img_res_toshow.shape[1]
100
+ dim=(width,height)
101
  results = model.predict(image, imgsz=image_size, return_outputs=True)
102
+ #obtain BW image
103
+ bw=(results[0].masks.masks[0].cpu().numpy() * 255).astype("uint8")
104
+ #BW image with same dimention of initial image
105
+ bw=cv2.resize(bw, dim, interpolation = cv2.INTER_AREA)
106
+ img=img_res_toshow
107
+ contours, _ = cv2.findContours(bw, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
108
+ for i, c in enumerate(contours):
109
+ # Calculate the area of each contour
110
+ area = cv2.contourArea(c)
111
+
112
+ # Ignore contours that are too small or too large
113
+ if area < 3700 or 100000 < area:
114
+ continue
115
+
116
+ # Draw each contour only for visualisation purposes
117
+ cv2.drawContours(img, contours, i, (0, 0, 255), 2)
118
+
119
+ # Find the orientation of each shape
120
+ print(getOrientation(c, img))
 
 
 
 
 
 
 
121
 
122
+ return img
123
 
124
  inputs = [
125
  gr.inputs.Image(type="filepath", label="Input Image"),
126
+ gr.inputs.Dropdown(["turhancan97/yolov8m-trash"],
127
+ default="turhancan97/yolov8m-trash", label="Model"),
128
  gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
129
  gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
130
  gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
 
133
  outputs = gr.outputs.Image(type="filepath", label="Output Image")
134
  title = "Ultralytics YOLOv8: State-of-the-Art YOLO Models"
135
 
136
+ examples = [['highway.jpg', 'turhancan97/yolov8m-trash', 640, 0.25, 0.45], ['highway1.jpg', 'turhancan97/yolov8m-trash', 640, 0.25, 0.45], ['small-vehicles1.jpeg', 'turhancan97/yolov8m-trash', 1280, 0.25, 0.45]]
137
  demo_app = gr.Interface(
138
  fn=yolov8_inference,
139
  inputs=inputs,
requirements.txt CHANGED
@@ -1,5 +1,3 @@
1
- opencv_python
2
- sahi
3
- torch
4
- ultralytics==8.0.4
5
- ultralyticsplus==0.0.3
 
1
+ opencv-python==4.7.0.72
2
+ torch==2.0.1
3
+ ultralytics==8.0.100