File size: 5,293 Bytes
37f5c2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii Inc. All rights reserved.

import cv2
import numpy as np
COCO_CLASSES = ("red", "green", "yellow", "empty", "straight", "left", "right", "other")

__all__ = ["vis"]


def is_nearby(box1, box2, threshold=40):
    # Compute the centroid of both boxes
    cx1 = (box1[0] + box1[2]) / 2
    cy1 = (box1[1] + box1[3]) / 2
    cx2 = (box2[0] + box2[2]) / 2
    cy2 = (box2[1] + box2[3]) / 2

    # Compute the distance between centroids
    distance = ((cx1 - cx2) ** 2 + (cy1 - cy2) ** 2) ** 0.5

    return distance < threshold


def vis(img, boxes, scores, cls_ids, conf, class_names):
    arrow_offsets = {}
    seen_boxes = []
    for i in range(len(boxes)):
        box = boxes[i]
        cls_id = int(cls_ids[i])
        score = scores[i]
        if score < conf:
            continue

        x0, y0, x1, y1 = map(int, box)

        color = (_COLORS[cls_id] * 255).astype(np.uint8).tolist()
        text = "{}:{:.1f}%".format(class_names[cls_id], score * 100)
        txt_color = (0, 0, 0) if np.mean(_COLORS[cls_id]) > 0.5 else (255, 255, 255)
        font = cv2.FONT_HERSHEY_SIMPLEX

        txt_size = cv2.getTextSize(text, font, 0.4, 1)[0]
        if cls_id < 4:
            overlay = img.copy()
            cv2.rectangle(overlay, (x0, y0), (x1, y1), color, -1)  # -1 fills the rectangle
            alpha = 0.4  # Transparency factor.
            cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img)
            cv2.rectangle(img, (x0, y0), (x1, y1), color, 2)

            txt_bk_color = (_COLORS[cls_id] * 255 * 0.7).astype(np.uint8).tolist()
            cv2.rectangle(
                img,
                (x0, y0 + 1),
                (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])),
                txt_bk_color,
                -1,
            )
            cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.4, txt_color, thickness=1)
        else:
            nearby_box_idx = None
            for idx, seen_box in enumerate(seen_boxes):
                if is_nearby(seen_box, box):
                    nearby_box_idx = idx
                    break
            offset = 0
            if nearby_box_idx is not None:
                arrow_offsets[nearby_box_idx] = arrow_offsets.get(nearby_box_idx, 0) + 1
                offset = arrow_offsets[nearby_box_idx] * (txt_size[1] + 5)
            else:
                seen_boxes.append(box)

            txt_bk_color = (_COLORS[cls_id] * 255 * 0.7).astype(np.uint8).tolist()
            cv2.rectangle(
                img,
                (x0, y1 + 1 + offset),
                (x0 + txt_size[0] + 1, y1 + int(1.5 * txt_size[1]) + offset),
                txt_bk_color,
                -1,
            )
            cv2.putText(
                img, text, (x0, y1 + txt_size[1] + offset), font, 0.4, txt_color, thickness=1
            )
    return img


_COLORS = np.array(
    [   # B  , G    , R
        0.000, 0.000, 1.000,
        1.000, 0.300, 0.000,
        0.000, 1.000, 1.000,
        0.494, 0.184, 0.556,
        0.466, 0.674, 0.188,
        0.301, 0.745, 0.933,
        0.635, 0.078, 0.184,
        0.300, 0.300, 0.300,
        0.600, 0.600, 0.600,
        1.000, 0.000, 0.000,
        1.000, 0.500, 0.000,
        0.749, 0.749, 0.000,
        0.000, 1.000, 0.000,
        0.000, 0.000, 1.000,
        0.667, 0.000, 1.000,
        0.333, 0.333, 0.000,
        0.333, 0.667, 0.000,
        0.333, 1.000, 0.000,
        0.667, 0.333, 0.000,
        0.667, 0.667, 0.000,
        0.667, 1.000, 0.000,
        1.000, 0.333, 0.000,
        1.000, 0.667, 0.000,
        1.000, 1.000, 0.000,
        0.000, 0.333, 0.500,
        0.000, 0.667, 0.500,
        0.000, 1.000, 0.500,
        0.333, 0.000, 0.500,
        0.333, 0.333, 0.500,
        0.333, 0.667, 0.500,
        0.333, 1.000, 0.500,
        0.667, 0.000, 0.500,
        0.667, 0.333, 0.500,
        0.667, 0.667, 0.500,
        0.667, 1.000, 0.500,
        1.000, 0.000, 0.500,
        1.000, 0.333, 0.500,
        1.000, 0.667, 0.500,
        1.000, 1.000, 0.500,
        0.000, 0.333, 1.000,
        0.000, 0.667, 1.000,
        0.000, 1.000, 1.000,
        0.333, 0.000, 1.000,
        0.333, 0.333, 1.000,
        0.333, 0.667, 1.000,
        0.333, 1.000, 1.000,
        0.667, 0.000, 1.000,
        0.667, 0.333, 1.000,
        0.667, 0.667, 1.000,
        0.667, 1.000, 1.000,
        1.000, 0.000, 1.000,
        1.000, 0.333, 1.000,
        1.000, 0.667, 1.000,
        0.333, 0.000, 0.000,
        0.500, 0.000, 0.000,
        0.667, 0.000, 0.000,
        0.833, 0.000, 0.000,
        1.000, 0.000, 0.000,
        0.000, 0.167, 0.000,
        0.000, 0.333, 0.000,
        0.000, 0.500, 0.000,
        0.000, 0.667, 0.000,
        0.000, 0.833, 0.000,
        0.000, 1.000, 0.000,
        0.000, 0.000, 0.167,
        0.000, 0.000, 0.333,
        0.000, 0.000, 0.500,
        0.000, 0.000, 0.667,
        0.000, 0.000, 0.833,
        0.000, 0.000, 1.000,
        0.000, 0.000, 0.000,
        0.143, 0.143, 0.143,
        0.286, 0.286, 0.286,
        0.429, 0.429, 0.429,
        0.571, 0.571, 0.571,
        0.714, 0.714, 0.714,
        0.857, 0.857, 0.857,
        0.000, 0.447, 0.741,
        0.314, 0.717, 0.741,
        0.50, 0.5, 0
    ]
).astype(np.float32).reshape(-1, 3)