#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import contextlib import io import itertools import json import tempfile import time from collections import ChainMap, defaultdict from loguru import logger from tabulate import tabulate from tqdm import tqdm import numpy as np import torch from yolox.data.datasets import COCO_CLASSES from yolox.utils import ( gather, is_main_process, postprocess, synchronize, time_synchronized, xyxy2xywh ) def per_class_AR_table(coco_eval, class_names=COCO_CLASSES, headers=["class", "AR"], colums=6): per_class_AR = {} recalls = coco_eval.eval["recall"] # dimension of recalls: [TxKxAxM] # recall has dims (iou, cls, area range, max dets) assert len(class_names) == recalls.shape[1] for idx, name in enumerate(class_names): recall = recalls[:, idx, 0, -1] recall = recall[recall > -1] ar = np.mean(recall) if recall.size else float("nan") per_class_AR[name] = float(ar * 100) num_cols = min(colums, len(per_class_AR) * len(headers)) result_pair = [x for pair in per_class_AR.items() for x in pair] row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)]) table_headers = headers * (num_cols // len(headers)) table = tabulate( row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left", ) return table def per_class_AP_table(coco_eval, class_names=COCO_CLASSES, headers=["class", "AP"], colums=6): per_class_AP = {} precisions = coco_eval.eval["precision"] # dimension of precisions: [TxRxKxAxM] # precision has dims (iou, recall, cls, area range, max dets) assert len(class_names) == precisions.shape[2] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] ap = np.mean(precision) if precision.size else float("nan") per_class_AP[name] = float(ap * 100) num_cols = min(colums, len(per_class_AP) * len(headers)) result_pair = [x for pair in per_class_AP.items() for x in pair] row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)]) table_headers = headers * (num_cols // len(headers)) table = tabulate( row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left", ) return table class COCOEvaluator: """ COCO AP Evaluation class. All the data in the val2017 dataset are processed and evaluated by COCO API. """ def __init__( self, dataloader, img_size: int, confthre: float, nmsthre: float, num_classes: int, testdev: bool = False, per_class_AP: bool = True, per_class_AR: bool = True, ): """ Args: dataloader (Dataloader): evaluate dataloader. img_size: image size after preprocess. images are resized to squares whose shape is (img_size, img_size). confthre: confidence threshold ranging from 0 to 1, which is defined in the config file. nmsthre: IoU threshold of non-max supression ranging from 0 to 1. per_class_AP: Show per class AP during evalution or not. Default to True. per_class_AR: Show per class AR during evalution or not. Default to True. """ self.dataloader = dataloader self.img_size = img_size self.confthre = confthre self.nmsthre = nmsthre self.num_classes = num_classes self.testdev = testdev self.per_class_AP = per_class_AP self.per_class_AR = per_class_AR def evaluate( self, model, distributed=False, half=False, trt_file=None, decoder=None, test_size=None, return_outputs=False ): """ COCO average precision (AP) Evaluation. Iterate inference on the test dataset and the results are evaluated by COCO API. NOTE: This function will change training mode to False, please save states if needed. Args: model : model to evaluate. Returns: ap50_95 (float) : COCO AP of IoU=50:95 ap50 (float) : COCO AP of IoU=50 summary (sr): summary info of evaluation. """ # TODO half to amp_test tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor model = model.eval() if half: model = model.half() ids = [] data_list = [] output_data = defaultdict() progress_bar = tqdm if is_main_process() else iter inference_time = 0 nms_time = 0 n_samples = max(len(self.dataloader) - 1, 1) if trt_file is not None: from torch2trt import TRTModule model_trt = TRTModule() model_trt.load_state_dict(torch.load(trt_file)) x = torch.ones(1, 3, test_size[0], test_size[1]).cuda() model(x) model = model_trt for cur_iter, (imgs, _, info_imgs, ids) in enumerate( progress_bar(self.dataloader) ): with torch.no_grad(): imgs = imgs.type(tensor_type) # skip the last iters since batchsize might be not enough for batch inference is_time_record = cur_iter < len(self.dataloader) - 1 if is_time_record: start = time.time() outputs = model(imgs) if decoder is not None: outputs = decoder(outputs, dtype=outputs.type()) if is_time_record: infer_end = time_synchronized() inference_time += infer_end - start outputs = postprocess( outputs, self.num_classes, self.confthre, self.nmsthre ) if is_time_record: nms_end = time_synchronized() nms_time += nms_end - infer_end data_list_elem, image_wise_data = self.convert_to_coco_format( outputs, info_imgs, ids, return_outputs=True) data_list.extend(data_list_elem) output_data.update(image_wise_data) statistics = torch.cuda.FloatTensor([inference_time, nms_time, n_samples]) if distributed: # different process/device might have different speed, # to make sure the process will not be stucked, sync func is used here. synchronize() data_list = gather(data_list, dst=0) output_data = gather(output_data, dst=0) data_list = list(itertools.chain(*data_list)) output_data = dict(ChainMap(*output_data)) torch.distributed.reduce(statistics, dst=0) eval_results = self.evaluate_prediction(data_list, statistics) synchronize() if return_outputs: return eval_results, output_data return eval_results def convert_to_coco_format(self, outputs, info_imgs, ids, return_outputs=False): data_list = [] image_wise_data = defaultdict(dict) for (output, img_h, img_w, img_id) in zip( outputs, info_imgs[0], info_imgs[1], ids ): if output is None: continue output = output.cpu() bboxes = output[:, 0:4] # preprocessing: resize scale = min( self.img_size[0] / float(img_h), self.img_size[1] / float(img_w) ) bboxes /= scale cls = output[:, 6] scores = output[:, 4] * output[:, 5] image_wise_data.update({ int(img_id): { "bboxes": [box.numpy().tolist() for box in bboxes], "scores": [score.numpy().item() for score in scores], "categories": [ self.dataloader.dataset.class_ids[int(cls[ind])] for ind in range(bboxes.shape[0]) ], } }) bboxes = xyxy2xywh(bboxes) for ind in range(bboxes.shape[0]): label = self.dataloader.dataset.class_ids[int(cls[ind])] pred_data = { "image_id": int(img_id), "category_id": label, "bbox": bboxes[ind].numpy().tolist(), "score": scores[ind].numpy().item(), "segmentation": [], } # COCO json format data_list.append(pred_data) if return_outputs: return data_list, image_wise_data return data_list def evaluate_prediction(self, data_dict, statistics): if not is_main_process(): return 0, 0, None logger.info("Evaluate in main process...") annType = ["segm", "bbox", "keypoints"] inference_time = statistics[0].item() nms_time = statistics[1].item() n_samples = statistics[2].item() a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size) a_nms_time = 1000 * nms_time / (n_samples * self.dataloader.batch_size) time_info = ", ".join( [ "Average {} time: {:.2f} ms".format(k, v) for k, v in zip( ["forward", "NMS", "inference"], [a_infer_time, a_nms_time, (a_infer_time + a_nms_time)], ) ] ) info = time_info + "\n" # Evaluate the Dt (detection) json comparing with the ground truth if len(data_dict) > 0: cocoGt = self.dataloader.dataset.coco # TODO: since pycocotools can't process dict in py36, write data to json file. if self.testdev: json.dump(data_dict, open("./yolox_testdev_2017.json", "w")) cocoDt = cocoGt.loadRes("./yolox_testdev_2017.json") else: _, tmp = tempfile.mkstemp() json.dump(data_dict, open(tmp, "w")) cocoDt = cocoGt.loadRes(tmp) try: from yolox.layers import COCOeval_opt as COCOeval except ImportError: from pycocotools.cocoeval import COCOeval logger.warning("Use standard COCOeval.") cocoEval = COCOeval(cocoGt, cocoDt, annType[1]) cocoEval.evaluate() cocoEval.accumulate() redirect_string = io.StringIO() with contextlib.redirect_stdout(redirect_string): cocoEval.summarize() info += redirect_string.getvalue() cat_ids = list(cocoGt.cats.keys()) cat_names = [cocoGt.cats[catId]['name'] for catId in sorted(cat_ids)] if self.per_class_AP: AP_table = per_class_AP_table(cocoEval, class_names=cat_names) info += "per class AP:\n" + AP_table + "\n" if self.per_class_AR: AR_table = per_class_AR_table(cocoEval, class_names=cat_names) info += "per class AR:\n" + AR_table + "\n" return cocoEval.stats[0], cocoEval.stats[1], info else: return 0, 0, info