#!/usr/bin/env python3 # -*- coding:utf-8 -*- import torch from torch import nn from torch.hub import load_state_dict_from_url __all__ = [ "create_yolox_model", "yolox_nano", "yolox_tiny", "yolox_s", "yolox_m", "yolox_l", "yolox_x", "yolov3", "yolox_custom" ] _CKPT_ROOT_URL = "https://github.com/Megvii-BaseDetection/YOLOX/releases/download" _CKPT_FULL_PATH = { "yolox-nano": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_nano.pth", "yolox-tiny": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_tiny.pth", "yolox-s": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_s.pth", "yolox-m": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_m.pth", "yolox-l": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_l.pth", "yolox-x": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_x.pth", "yolov3": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_darknet.pth", } def create_yolox_model(name: str, pretrained: bool = True, num_classes: int = 80, device=None, exp_path: str = None, ckpt_path: str = None) -> nn.Module: """creates and loads a YOLOX model Args: name (str): name of model. for example, "yolox-s", "yolox-tiny" or "yolox_custom" if you want to load your own model. pretrained (bool): load pretrained weights into the model. Default to True. device (str): default device to for model. Default to None. num_classes (int): number of model classes. Default to 80. exp_path (str): path to your own experiment file. Required if name="yolox_custom" ckpt_path (str): path to your own ckpt. Required if name="yolox_custom" and you want to load a pretrained model Returns: YOLOX model (nn.Module) """ from yolox.exp import get_exp, Exp if device is None: device = "cuda:0" if torch.cuda.is_available() else "cpu" device = torch.device(device) assert name in _CKPT_FULL_PATH or name == "yolox_custom", \ f"user should use one of value in {_CKPT_FULL_PATH.keys()} or \"yolox_custom\"" if name in _CKPT_FULL_PATH: exp: Exp = get_exp(exp_name=name) exp.num_classes = num_classes yolox_model = exp.get_model() if pretrained and num_classes == 80: weights_url = _CKPT_FULL_PATH[name] ckpt = load_state_dict_from_url(weights_url, map_location="cpu") if "model" in ckpt: ckpt = ckpt["model"] yolox_model.load_state_dict(ckpt) else: assert exp_path is not None, "for a \"yolox_custom\" model exp_path must be provided" exp: Exp = get_exp(exp_file=exp_path) yolox_model = exp.get_model() if ckpt_path: ckpt = torch.load(ckpt_path, map_location="cpu") if "model" in ckpt: ckpt = ckpt["model"] yolox_model.load_state_dict(ckpt) yolox_model.to(device) return yolox_model def yolox_nano(pretrained: bool = True, num_classes: int = 80, device: str = None) -> nn.Module: return create_yolox_model("yolox-nano", pretrained, num_classes, device) def yolox_tiny(pretrained: bool = True, num_classes: int = 80, device: str = None) -> nn.Module: return create_yolox_model("yolox-tiny", pretrained, num_classes, device) def yolox_s(pretrained: bool = True, num_classes: int = 80, device: str = None) -> nn.Module: return create_yolox_model("yolox-s", pretrained, num_classes, device) def yolox_m(pretrained: bool = True, num_classes: int = 80, device: str = None) -> nn.Module: return create_yolox_model("yolox-m", pretrained, num_classes, device) def yolox_l(pretrained: bool = True, num_classes: int = 80, device: str = None) -> nn.Module: return create_yolox_model("yolox-l", pretrained, num_classes, device) def yolox_x(pretrained: bool = True, num_classes: int = 80, device: str = None) -> nn.Module: return create_yolox_model("yolox-x", pretrained, num_classes, device) def yolov3(pretrained: bool = True, num_classes: int = 80, device: str = None) -> nn.Module: return create_yolox_model("yolov3", pretrained, num_classes, device) def yolox_custom(ckpt_path: str = None, exp_path: str = None, device: str = None) -> nn.Module: return create_yolox_model("yolox_custom", ckpt_path=ckpt_path, exp_path=exp_path, device=device)