File size: 5,665 Bytes
d17095f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')

import streamlit as st
from PIL import Image
import whisper
import torch
import os
from streamlit_lottie import st_lottie 
from pytube import YouTube
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import DataFrameLoader
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
import pandas as pd
import requests

st.set_page_config(layout="centered", page_title="Youtube QnA")

#header of the application
# image = Image.open('logo.png')
 
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>

"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True) 

 
def load_lottieurl(url: str):
    r = requests.get(url)
    if r.status_code != 200:
        return None
    return r.json()
    
url_lottie1 = "https://lottie.host/d860aaf2-a646-42f2-8a51-3efe3be59bf2/tpZB5YYkuT.json"
url_lottie2 = "https://lottie.host/93dcafc4-8531-4406-891c-89c28e4f76e1/lWpokVrjB9.json"
lottie_hello1 = load_lottieurl(url_lottie2)
place1 = st.empty()


logo1 = "aai_white.png"
logo2 = "alphaGPT-2k.png"
logo3 = "banner.png"
with place1.container():
    #App title
    st.header("Youtube Question Answering Bot")
    anima1 , anima2 = st.columns([1,1])
    with anima1:
        # st.image("aai_black.png", width = 350, use_column_width=True)
        st.image("logo.png", width = 300, use_column_width=True)
    with anima2:
        st_lottie(
        lottie_hello1,
        speed=1,
        reverse=False,
        loop=True,
        quality="high", # medium ; high
        height=250,
        width=250,
        key=None,
        )

def extract_and_save_audio(video_URL, destination, final_filename):
  video = YouTube(video_URL)#get video
  audio = video.streams.filter(only_audio=True).first()#seperate audio
  output = audio.download(output_path = destination)#download and save for transcription
  _, ext = os.path.splitext(output)
  new_file = final_filename + '.mp3'
  os.rename(output, new_file)

def chunk_clips(transcription, clip_size):
  texts = []
  sources = []
  for i in range(0,len(transcription),clip_size):
    clip_df = transcription.iloc[i:i+clip_size,:]
    text = " ".join(clip_df['text'].to_list())
    source = str(round(clip_df.iloc[0]['start']/60,2))+ " - "+str(round(clip_df.iloc[-1]['end']/60,2)) + " min"
    print(text)
    print(source)
    texts.append(text)
    sources.append(source)

  return [texts,sources]

openai_api_key = st.sidebar.text_input("OpenAI API Key", type="password")
if not openai_api_key:
    st.info("Please add your OpenAI API key to continue.")
    st.stop()
    
    
# #App title
# st.header("Youtube Question Answering Bot")
state = st.session_state
site = st.text_input("Enter your URL here")
if st.button("Build Model"):
  if site is None:
    st.info(f"""Enter URL to Build QnA Bot""")
  elif site:
    try:
      my_bar = st.progress(0, text="Fetching the video. Please wait.")
      # Set the device
      device = "cuda" if torch.cuda.is_available() else "cpu"
      
      # Load the model
      whisper_model = whisper.load_model("base", device=device)
          
      # Video to audio
      video_URL = site
      destination = "."
      final_filename = "AlphaGPT"
      extract_and_save_audio(video_URL, destination, final_filename)

      # run the whisper model
      audio_file = "AlphaGPT.mp3"
      my_bar.progress(50, text="Transcribing the video.")
      result = whisper_model.transcribe(audio_file, fp16=False, language='English')
     
      transcription = pd.DataFrame(result['segments'])

      chunks = chunk_clips(transcription, 50)
      documents = chunks[0]
      sources = chunks[1]


      my_bar.progress(75, text="Building QnA model.")
      embeddings = OpenAIEmbeddings(openai_api_key = openai_api_key)
      #vstore with metadata. Here we will store page numbers.
      vStore = Chroma.from_texts(documents, embeddings, metadatas=[{"source": s} for s in sources])
      #deciding model
      model_name = "gpt-3.5-turbo"
      
      retriever = vStore.as_retriever()
      retriever.search_kwargs = {'k':2}
      llm = OpenAI(model_name=model_name, openai_api_key = openai_api_key)
      model = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
  
      my_bar.progress(100, text="Model is ready.")
      st.session_state['crawling'] = True
      st.session_state['model'] = model
      st.session_state['site'] = site

    except Exception as e:
              st.error(f"An error occurred: {e}")
              st.error('Oops, crawling resulted in an error :( Please try again with a different URL.')
     
if site and ("crawling" in state):
      st.header("Ask your data")
      model = st.session_state['model']
      site = st.session_state['site']
      st.video(site, format="video/mp4", start_time=0)
      user_q = st.text_input("Enter your questions here")
      if st.button("Get Response"):
        try:
          with st.spinner("Model is working on it..."):
#             st.write(model)
            result = model({"question":user_q}, return_only_outputs=True)
            st.subheader('Your response:')
            st.write(result["answer"])
            st.subheader('Sources:')
            st.write(result["sources"])
        except Exception as e:
          st.error(f"An error occurred: {e}")
          st.error('Oops, the GPT response resulted in an error :( Please try again with a different question.')