Spaces:
Sleeping
Sleeping
File size: 5,665 Bytes
d17095f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
import streamlit as st
from PIL import Image
import whisper
import torch
import os
from streamlit_lottie import st_lottie
from pytube import YouTube
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import DataFrameLoader
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
import pandas as pd
import requests
st.set_page_config(layout="centered", page_title="Youtube QnA")
#header of the application
# image = Image.open('logo.png')
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
url_lottie1 = "https://lottie.host/d860aaf2-a646-42f2-8a51-3efe3be59bf2/tpZB5YYkuT.json"
url_lottie2 = "https://lottie.host/93dcafc4-8531-4406-891c-89c28e4f76e1/lWpokVrjB9.json"
lottie_hello1 = load_lottieurl(url_lottie2)
place1 = st.empty()
logo1 = "aai_white.png"
logo2 = "alphaGPT-2k.png"
logo3 = "banner.png"
with place1.container():
#App title
st.header("Youtube Question Answering Bot")
anima1 , anima2 = st.columns([1,1])
with anima1:
# st.image("aai_black.png", width = 350, use_column_width=True)
st.image("logo.png", width = 300, use_column_width=True)
with anima2:
st_lottie(
lottie_hello1,
speed=1,
reverse=False,
loop=True,
quality="high", # medium ; high
height=250,
width=250,
key=None,
)
def extract_and_save_audio(video_URL, destination, final_filename):
video = YouTube(video_URL)#get video
audio = video.streams.filter(only_audio=True).first()#seperate audio
output = audio.download(output_path = destination)#download and save for transcription
_, ext = os.path.splitext(output)
new_file = final_filename + '.mp3'
os.rename(output, new_file)
def chunk_clips(transcription, clip_size):
texts = []
sources = []
for i in range(0,len(transcription),clip_size):
clip_df = transcription.iloc[i:i+clip_size,:]
text = " ".join(clip_df['text'].to_list())
source = str(round(clip_df.iloc[0]['start']/60,2))+ " - "+str(round(clip_df.iloc[-1]['end']/60,2)) + " min"
print(text)
print(source)
texts.append(text)
sources.append(source)
return [texts,sources]
openai_api_key = st.sidebar.text_input("OpenAI API Key", type="password")
if not openai_api_key:
st.info("Please add your OpenAI API key to continue.")
st.stop()
# #App title
# st.header("Youtube Question Answering Bot")
state = st.session_state
site = st.text_input("Enter your URL here")
if st.button("Build Model"):
if site is None:
st.info(f"""Enter URL to Build QnA Bot""")
elif site:
try:
my_bar = st.progress(0, text="Fetching the video. Please wait.")
# Set the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the model
whisper_model = whisper.load_model("base", device=device)
# Video to audio
video_URL = site
destination = "."
final_filename = "AlphaGPT"
extract_and_save_audio(video_URL, destination, final_filename)
# run the whisper model
audio_file = "AlphaGPT.mp3"
my_bar.progress(50, text="Transcribing the video.")
result = whisper_model.transcribe(audio_file, fp16=False, language='English')
transcription = pd.DataFrame(result['segments'])
chunks = chunk_clips(transcription, 50)
documents = chunks[0]
sources = chunks[1]
my_bar.progress(75, text="Building QnA model.")
embeddings = OpenAIEmbeddings(openai_api_key = openai_api_key)
#vstore with metadata. Here we will store page numbers.
vStore = Chroma.from_texts(documents, embeddings, metadatas=[{"source": s} for s in sources])
#deciding model
model_name = "gpt-3.5-turbo"
retriever = vStore.as_retriever()
retriever.search_kwargs = {'k':2}
llm = OpenAI(model_name=model_name, openai_api_key = openai_api_key)
model = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
my_bar.progress(100, text="Model is ready.")
st.session_state['crawling'] = True
st.session_state['model'] = model
st.session_state['site'] = site
except Exception as e:
st.error(f"An error occurred: {e}")
st.error('Oops, crawling resulted in an error :( Please try again with a different URL.')
if site and ("crawling" in state):
st.header("Ask your data")
model = st.session_state['model']
site = st.session_state['site']
st.video(site, format="video/mp4", start_time=0)
user_q = st.text_input("Enter your questions here")
if st.button("Get Response"):
try:
with st.spinner("Model is working on it..."):
# st.write(model)
result = model({"question":user_q}, return_only_outputs=True)
st.subheader('Your response:')
st.write(result["answer"])
st.subheader('Sources:')
st.write(result["sources"])
except Exception as e:
st.error(f"An error occurred: {e}")
st.error('Oops, the GPT response resulted in an error :( Please try again with a different question.')
|