youtube_QA / app.py
tushar310's picture
Update app.py
ce9c45f
raw
history blame
5.8 kB
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
import streamlit as st
from PIL import Image
import whisper
import torch
import os
from streamlit_lottie import st_lottie
from pytube import YouTube
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import DataFrameLoader
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.embeddings.openai import OpenAIEmbeddings
# from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
import pandas as pd
import requests
st.set_page_config(layout="centered", page_title="Youtube QnA")
#header of the application
# image = Image.open('logo.png')
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
url_lottie1 = "https://lottie.host/d860aaf2-a646-42f2-8a51-3efe3be59bf2/tpZB5YYkuT.json"
url_lottie2 = "https://lottie.host/93dcafc4-8531-4406-891c-89c28e4f76e1/lWpokVrjB9.json"
lottie_hello1 = load_lottieurl(url_lottie2)
place1 = st.empty()
logo1 = "aai_white.png"
logo2 = "alphaGPT-2k.png"
logo3 = "banner.png"
with place1.container():
#App title
st.header("Youtube Question Answering Bot")
anima1 , anima2 = st.columns([1,1])
with anima1:
# st.image("aai_black.png", width = 350, use_column_width=True)
st.image("logo.png", width = 300, use_column_width=True)
with anima2:
st_lottie(
lottie_hello1,
speed=1,
reverse=False,
loop=True,
quality="high", # medium ; high
height=250,
width=250,
key=None,
)
def extract_and_save_audio(video_URL, destination, final_filename):
video = YouTube(video_URL)#get video
audio = video.streams.filter(only_audio=True).first()#seperate audio
output = audio.download(output_path = destination)#download and save for transcription
_, ext = os.path.splitext(output)
new_file = final_filename + '.mp3'
os.rename(output, new_file)
def chunk_clips(transcription, clip_size):
texts = []
sources = []
for i in range(0,len(transcription),clip_size):
clip_df = transcription.iloc[i:i+clip_size,:]
text = " ".join(clip_df['text'].to_list())
source = str(round(clip_df.iloc[0]['start']/60,2))+ " - "+str(round(clip_df.iloc[-1]['end']/60,2)) + " min"
print(text)
print(source)
texts.append(text)
sources.append(source)
return [texts,sources]
openai_api_key = st.sidebar.text_input("OpenAI API Key", type="password")
if not openai_api_key:
st.info("Please add your OpenAI API key to continue.")
st.stop()
# #App title
# st.header("Youtube Question Answering Bot")
state = st.session_state
site = st.text_input("Enter your URL here")
if st.button("Build Model"):
if site is None:
st.info(f"""Enter URL to Build QnA Bot""")
elif site:
try:
my_bar = st.progress(0, text="Fetching the video. Please wait.")
# Set the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the model
whisper_model = whisper.load_model("base", device=device)
# Video to audio
video_URL = site
destination = "."
final_filename = "AlphaGPT"
extract_and_save_audio(video_URL, destination, final_filename)
# run the whisper model
audio_file = "AlphaGPT.mp3"
my_bar.progress(50, text="Transcribing the video.")
result = whisper_model.transcribe(audio_file, fp16=False, language='English')
transcription = pd.DataFrame(result['segments'])
chunks = chunk_clips(transcription, 50)
documents = chunks[0]
sources = chunks[1]
my_bar.progress(75, text="Building QnA model.")
embeddings = OpenAIEmbeddings(openai_api_key = openai_api_key)
#vstore with metadata. Here we will store page numbers.
vStore = Chroma.from_texts(documents, embeddings, metadatas=[{"source": s} for s in sources])
#deciding model
model_name = "gpt-3.5-turbo"
retriever = vStore.as_retriever()
retriever.search_kwargs = {'k':2}
llm = ChatOpenAI(model_name=model_name, openai_api_key=openai_api_key)
# llm = OpenAI(model_name=model_name, openai_api_key = openai_api_key)
model = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
my_bar.progress(100, text="Model is ready.")
st.session_state['crawling'] = True
st.session_state['model'] = model
st.session_state['site'] = site
except Exception as e:
st.error(f"An error occurred: {e}")
st.error('Oops, crawling resulted in an error :( Please try again with a different URL.')
if site and ("crawling" in state):
st.header("Ask your data")
model = st.session_state['model']
site = st.session_state['site']
st.video(site, format="video/mp4", start_time=0)
user_q = st.text_input("Enter your questions here")
if st.button("Get Response"):
try:
with st.spinner("Model is working on it..."):
# st.write(model)
result = model({"question":user_q}, return_only_outputs=True)
st.subheader('Your response:')
st.write(result["answer"])
st.subheader('Sources:')
st.write(result["sources"])
except Exception as e:
st.error(f"An error occurred: {e}")
st.error('Oops, the GPT response resulted in an error :( Please try again with a different question.')