Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import faiss
|
4 |
+
import gradio as gr
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
|
7 |
+
# Load the CSV file with embeddings
|
8 |
+
csv_path = 'df_after_rec_embedding.csv' # Update with your actual CSV path
|
9 |
+
df = pd.read_csv(csv_path)
|
10 |
+
data = df.to_numpy().astype('float32')
|
11 |
+
|
12 |
+
# Create a FAISS index
|
13 |
+
dimension = data.shape[1]
|
14 |
+
index = faiss.IndexFlatL2(dimension) # L2 distance metric
|
15 |
+
index.add(data) # Add data to the index
|
16 |
+
|
17 |
+
# Load the nomic-ai/nomic-embed-text-v1 model
|
18 |
+
model = SentenceTransformer('nomic-ai/nomic-embed-text-v1',device='cpu', trust_remote_code=True)
|
19 |
+
|
20 |
+
|
21 |
+
# Function to embed query and search using FAISS
|
22 |
+
def search(query):
|
23 |
+
# Embed the query using the model
|
24 |
+
query_vector = model.encode([query])[0].astype('float32')
|
25 |
+
|
26 |
+
# Search the FAISS index
|
27 |
+
distances, indices = index.search(np.array([query_vector]), k=5) # Search for top 5 closest vectors
|
28 |
+
|
29 |
+
# Return results with indices and distances
|
30 |
+
return [f"Index: {i}, Distance: {d:.4f}" for i, d in zip(indices[0], distances[0])]
|
31 |
+
|
32 |
+
|
33 |
+
# Create the Gradio interface
|
34 |
+
def gradio_app():
|
35 |
+
with gr.Blocks() as demo:
|
36 |
+
gr.Markdown("## FAISS Search Interface with Nomic Embedder")
|
37 |
+
|
38 |
+
with gr.Row():
|
39 |
+
with gr.Column():
|
40 |
+
query_input = gr.Textbox(
|
41 |
+
label="Search Query",
|
42 |
+
placeholder="Type your search query here"
|
43 |
+
)
|
44 |
+
search_button = gr.Button("Search")
|
45 |
+
|
46 |
+
with gr.Column():
|
47 |
+
search_results = gr.Textbox(label="Search Results")
|
48 |
+
|
49 |
+
search_button.click(
|
50 |
+
fn=search,
|
51 |
+
inputs=[query_input],
|
52 |
+
outputs=[search_results]
|
53 |
+
)
|
54 |
+
|
55 |
+
return demo
|
56 |
+
|
57 |
+
|
58 |
+
# Launch the Gradio app
|
59 |
+
demo = gradio_app()
|
60 |
+
demo.launch()
|