File size: 4,347 Bytes
26c849b
 
 
 
 
 
 
 
 
 
 
 
da7674e
 
 
 
 
 
26c849b
c8e8f3e
26c849b
 
 
 
 
4cfc3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481576d
4cfc3ed
 
 
 
 
5dc860d
 
 
 
 
 
481576d
5dc860d
 
 
 
 
 
 
 
 
 
 
 
 
 
481576d
5dc860d
 
481576d
5dc860d
 
 
 
 
 
 
481576d
5dc860d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135b144
5dc860d
 
e458ce0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import json
import pandas as pd
import time
import spacy
from spacy.lang.en.stop_words import STOP_WORDS
from string import punctuation
from collections import Counter
from heapq import nlargest
import nltk
import numpy as np
from sentence_transformers import SentenceTransformer, util
from openai.embeddings_utils import get_embedding, cosine_similarity
import gradio as gr
from huggingface_hub import InferenceClient
import nltk
from spacy.cli import download
nltk.download('punkt')
nltk.download('punkt_tab')

df_with_embedding2 = pd.read_pickle('df_2.pkl')

from sentence_transformers import SentenceTransformer #import model

embedder = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5",trust_remote_code=True)

def search(query):
  # return the first 15 results ranked by similarity.
  n = 15

  # Embedding the query.
  query_embedding = embedder.encode(query)

  # Generate the similarity column.
  df_with_embedding2["similarity"] = (df_with_embedding2.embedding_summary.apply(lambda x: cosine_similarity(x, query_embedding.reshape(768,-1)))+df_with_embedding2.embedding_reviews.apply(lambda x: cosine_similarity(x, query_embedding.reshape(768,-1))))/2


  results = (
      df_with_embedding2.sort_values("similarity", ascending=False)
      .head(n))

  resultlist = []


  hlist = []
  for r in results.index:
      if results.hotel_name[r] not in hlist:
          smalldf = results.loc[results.hotel_name == results.hotel_name[r]]
          if smalldf.shape[1] > 3:
            smalldf = smalldf[:3]

          resultlist.append(
          {
            "name":results.hotel_name[r],
            "score": smalldf.similarity[r][0],
            "rating": smalldf.rating_value[r],
            "review_count": smalldf.review_count[r],
            "street_address": smalldf.street_address[r],
            "city": smalldf.locality[r],
            "country": smalldf.country[r],
            "hotel_description":smalldf.hotel_description[r],
            "hotel_image":smalldf.hotel_image[r]
          })
          hlist.append(results.hotel_name[r])
  return resultlist

import gradio as gr
import json

def display_hotel_info(query_json_str):
    """This app helps you find hotels based on your search query. Enter a city, location, hotel name or just type what you looking for ."""
    try:
        query_json = search(query_json_str)  # Assume this function returns a list of hotel data dictionaries
        hotel_infos = []
        image_outputs = []

        for hotel in query_json:
            if not isinstance(hotel, dict):
                raise ValueError("Expected hotel data to be a dictionary.")

            name = hotel.get("name", "N/A")
            score = hotel.get("score", 0.0)
            rating = hotel.get("rating", "N/A")
            review_count = hotel.get("review_count", 0)
            street_address = hotel.get("street_address", "N/A")
            city = hotel.get("city", "N/A")
            country = hotel.get("country", "N/A")
            hotel_description=hotel.get("hotel_description","N/A")
            hotel_image = hotel.get("hotel_image", None)


            hotel_info = f"""
            <div style="display: flex; align-items: center; margin-bottom: 20px;">
                <div style="flex: 1;">
                    <h3>{name}</h3>
                    <p><strong>Rating:</strong> {rating}</p>
                    <p><strong>Review Count:</strong> {review_count}</p>
                    <p><strong>Address:</strong> {street_address}, {city}, {country}</p>
                    <p><strong>hotel_description:</strong> {hotel_description}</p>
                </div>
                <div style="flex: 0 0 150px;">
                    <img src="{hotel_image}" alt="{name}" style="max-width: 150px; max-height: 150px; object-fit: cover;">
                </div>
            </div>
            """
            hotel_infos.append(hotel_info)

        return "<br><br>".join(hotel_infos)

    except (json.JSONDecodeError, ValueError) as e:
        return f"Error: {str(e)}"

interface = gr.Interface(
    fn=display_hotel_info,
    inputs="text",
    outputs=gr.HTML(label="Hotel Information"),
    title="Hotel Recommendation Display",
    description="This app helps you find hotels based on your search query. Enter a city, location, hotel name or just type what you looking for.",
)

interface.launch()