twn39's picture
update
e9a4a30
import cv2
import torch
import gradio as gr
from langchain_core.messages import HumanMessage, AIMessage
from llm import DeepSeekLLM, OpenRouterLLM, TongYiLLM
from config import settings
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from diffusers import (
StableDiffusionXLPipeline,
DPMSolverMultistepScheduler,
DDIMScheduler,
HeunDiscreteScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
PNDMScheduler
)
class KarrasDPM:
@staticmethod
def from_config(config):
return DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True)
SCHEDULERS = {
"DDIM": DDIMScheduler,
"DPMSolverMultistep": DPMSolverMultistepScheduler,
"HeunDiscrete": HeunDiscreteScheduler,
"KarrasDPM": KarrasDPM,
"K_EULER_ANCESTRAL": EulerAncestralDiscreteScheduler,
"K_EULER": EulerDiscreteScheduler,
"PNDM": PNDMScheduler,
}
deep_seek_llm = DeepSeekLLM(api_key=settings.deep_seek_api_key)
open_router_llm = OpenRouterLLM(api_key=settings.open_router_api_key)
tongyi_llm = TongYiLLM(api_key=settings.tongyi_api_key)
def init_chat():
return deep_seek_llm.get_chat_engine()
def predict(message, history, chat):
if chat is None:
chat = init_chat()
history_messages = []
for human, assistant in history:
history_messages.append(HumanMessage(content=human))
history_messages.append(AIMessage(content=assistant))
history_messages.append(HumanMessage(content=message.text))
response_message = ''
for chunk in chat.stream(history_messages):
response_message = response_message + chunk.content
yield response_message
def update_chat(_provider: str, _chat, _model: str, _temperature: float, _max_tokens: int):
print('?????', _provider, _chat, _model, _temperature, _max_tokens)
if _provider == 'DeepSeek':
_chat = deep_seek_llm.get_chat_engine(model=_model, temperature=_temperature, max_tokens=_max_tokens)
if _provider == 'OpenRouter':
_chat = open_router_llm.get_chat_engine(model=_model, temperature=_temperature, max_tokens=_max_tokens)
if _provider == 'Tongyi':
_chat = tongyi_llm.get_chat_engine(model=_model, temperature=_temperature, max_tokens=_max_tokens)
return _chat
def object_remove(_image, _refined: bool):
mask = _image['layers'][0]
mask = mask.convert('L')
_input = {
'img': _image['background'].convert('RGB'),
'mask': mask,
}
inpainting = pipeline(Tasks.image_inpainting, model='damo/cv_fft_inpainting_lama', refined=_refined)
result = inpainting(_input)
vis_img = result[OutputKeys.OUTPUT_IMG]
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
return vis_img, mask
def bg_remove(_image, _type):
input_image = _image['background'].convert('RGB')
if _type == '人像':
matting = pipeline(Tasks.portrait_matting, model='damo/cv_unet_image-matting')
else:
matting = pipeline(Tasks.universal_matting, model='damo/cv_unet_universal-matting')
result = matting(input_image)
vis_img = result[OutputKeys.OUTPUT_IMG]
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGRA2RGBA)
return vis_img
def text_to_image(_prompt: str, _n_prompt: str, _scheduler: str, _inference_steps: int, _w: int, _h: int, _guidance_scale: float):
print('????????', _prompt, _scheduler, _inference_steps, _w, _h, _guidance_scale)
t2i_pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
).to("cuda")
t2i_pipeline.scheduler = SCHEDULERS[_scheduler].from_config(t2i_pipeline.scheduler.config)
t2i_pipeline.enable_xformers_memory_efficient_attention()
with torch.inference_mode():
result = t2i_pipeline(
prompt=_prompt,
negative_prompt=_n_prompt,
num_inference_steps=_inference_steps,
width=_w,
height=_h,
guidance_scale=_guidance_scale,
).images[0]
return result
def image_upscale(_image, _size: str):
sr = pipeline(Tasks.image_super_resolution, model='damo/cv_rrdb_image-super-resolution')
result = sr(_image['background'].convert('RGB'))
vis_img = result[OutputKeys.OUTPUT_IMG]
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
return vis_img
with gr.Blocks() as app:
with gr.Tab('聊天'):
chat_engine = gr.State(value=None)
with gr.Row():
with gr.Column(scale=2, min_width=600):
chatbot = gr.ChatInterface(
predict,
multimodal=True,
chatbot=gr.Chatbot(elem_id="chatbot", height=600, show_share_button=False),
textbox=gr.MultimodalTextbox(lines=1),
additional_inputs=[chat_engine]
)
with gr.Column(scale=1, min_width=300):
with gr.Accordion('参数设置', open=True):
with gr.Column():
provider = gr.Dropdown(
label='模型厂商',
choices=['DeepSeek', 'OpenRouter', 'Tongyi'],
value='DeepSeek',
info='不同模型厂商参数,效果和价格略有不同,请先设置好对应模型厂商的 API Key。',
)
@gr.render(inputs=provider)
def show_model_config_panel(_provider):
if _provider == 'DeepSeek':
with gr.Column():
model = gr.Dropdown(
label='模型',
choices=deep_seek_llm.support_models,
value=deep_seek_llm.default_model
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=deep_seek_llm.default_temperature,
label="Temperature",
key="temperature",
)
max_tokens = gr.Slider(
minimum=1024,
maximum=1024 * 20,
step=128,
value=deep_seek_llm.default_max_tokens,
label="Max Tokens",
key="max_tokens",
)
model.change(
fn=update_chat,
inputs=[provider, chat_engine, model, temperature, max_tokens],
outputs=[chat_engine],
)
temperature.change(
fn=update_chat,
inputs=[provider, chat_engine, model, temperature, max_tokens],
outputs=[chat_engine],
)
max_tokens.change(
fn=update_chat,
inputs=[provider, chat_engine, model, temperature, max_tokens],
outputs=[chat_engine],
)
if _provider == 'OpenRouter':
with gr.Column():
model = gr.Dropdown(
label='模型',
choices=open_router_llm.support_models,
value=open_router_llm.default_model
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=open_router_llm.default_temperature,
label="Temperature",
key="temperature",
)
max_tokens = gr.Slider(
minimum=1024,
maximum=1024 * 20,
step=128,
value=open_router_llm.default_max_tokens,
label="Max Tokens",
key="max_tokens",
)
model.change(
fn=update_chat,
inputs=[provider, chat_engine, model, temperature, max_tokens],
outputs=[chat_engine],
)
temperature.change(
fn=update_chat,
inputs=[provider, chat_engine, model, temperature, max_tokens],
outputs=[chat_engine],
)
max_tokens.change(
fn=update_chat,
inputs=[provider, chat_engine, model, temperature, max_tokens],
outputs=[chat_engine],
)
if _provider == 'Tongyi':
with gr.Column():
model = gr.Dropdown(
label='模型',
choices=tongyi_llm.support_models,
value=tongyi_llm.default_model
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=tongyi_llm.default_temperature,
label="Temperature",
key="temperature",
)
max_tokens = gr.Slider(
minimum=1000,
maximum=2000,
step=100,
value=tongyi_llm.default_max_tokens,
label="Max Tokens",
key="max_tokens",
)
model.change(
fn=update_chat,
inputs=[provider, chat_engine, model, temperature, max_tokens],
outputs=[chat_engine],
)
temperature.change(
fn=update_chat,
inputs=[provider, chat_engine, model, temperature, max_tokens],
outputs=[chat_engine],
)
max_tokens.change(
fn=update_chat,
inputs=[provider, chat_engine, model, temperature, max_tokens],
outputs=[chat_engine],
)
with gr.Tab('图像编辑'):
with gr.Row():
with gr.Column(scale=2, min_width=600):
image = gr.ImageMask(
type='pil',
brush=gr.Brush(colors=["rgba(255, 255, 255, 0.9)"]),
)
with gr.Row():
mask_preview = gr.Image(label='蒙板预览')
image_preview = gr.Image(label='图片预览')
with gr.Column(scale=1, min_width=300):
with gr.Accordion(label="物体移除"):
object_remove_refined = gr.Checkbox(label="Refined(GPU)", info="只支持 GPU, 开启将获得更好的效果")
object_remove_btn = gr.Button('物体移除', variant='primary')
with gr.Accordion(label="背景移除"):
bg_remove_type = gr.Radio(["人像", "通用"], label="类型", value='人像')
bg_remove_btn = gr.Button('背景移除', variant='primary')
with gr.Accordion(label="高清放大"):
upscale_size = gr.Radio(["X2", "X4"], label="放大倍数", value='X2')
upscale_btn = gr.Button('高清放大', variant='primary')
object_remove_btn.click(fn=object_remove, inputs=[image, object_remove_refined], outputs=[image_preview, mask_preview])
bg_remove_btn.click(fn=bg_remove, inputs=[image, bg_remove_type], outputs=[image_preview])
upscale_btn.click(fn=image_upscale, inputs=[image, upscale_size], outputs=[image_preview])
with gr.Tab('画图(GPU)'):
with gr.Row():
with gr.Column(scale=2, min_width=600):
image = gr.Image()
with gr.Column(scale=1, min_width=300):
with gr.Accordion(label="提示词", open=True):
prompt = gr.Textbox(label="提示语", value="", lines=3)
negative_prompt = gr.Textbox(label="负提示语", value="ugly", lines=2)
with gr.Accordion(label="参数设置", open=False):
scheduler = gr.Dropdown(label='scheduler', choices=list(SCHEDULERS.keys()), value='KarrasDPM')
inference_steps = gr.Number(label='inference steps', value=22, minimum=1, maximum=100)
width = gr.Dropdown(label='width', choices=[512, 768, 832, 896, 1024, 1152], value=1024)
height = gr.Dropdown(label='height', choices=[512, 768, 832, 896, 1024, 1152], value=1024)
guidance_scale = gr.Number(label='guidance scale', value=7.0, minimum=1.0, maximum=10.0)
with gr.Row(variant='panel'):
t2i_btn = gr.Button('🪄生成', variant='primary')
t2i_btn.click(fn=text_to_image, inputs=[prompt, negative_prompt, scheduler, inference_steps, width, height, guidance_scale], outputs=[image])
app.launch(debug=settings.debug, show_api=False)