change app.py
Browse files
app.py
CHANGED
@@ -6,28 +6,28 @@ import cv2
|
|
6 |
import gradio as gr
|
7 |
import torch
|
8 |
import math
|
9 |
-
import spaces
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
try:
|
12 |
import mmpose
|
13 |
except:
|
14 |
-
os.system('pip install /
|
15 |
-
hf_hub_download(repo_id="caizhongang/SMPLer-X", filename="smpler_x_h32.pth.tar", local_dir="/home/user/app/pretrained_models")
|
16 |
-
os.system('cp -rf /home/user/app/assets/conversions.py /home/user/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torchgeometry/core/conversions.py')
|
17 |
-
DEFAULT_MODEL='
|
18 |
-
OUT_FOLDER = '/home/
|
19 |
os.makedirs(OUT_FOLDER, exist_ok=True)
|
20 |
num_gpus = 1 if torch.cuda.is_available() else -1
|
21 |
-
print("!!!", torch.cuda.is_available())
|
22 |
-
print(torch.cuda.device_count())
|
23 |
-
print(torch.version.cuda)
|
24 |
-
index = torch.cuda.current_device()
|
25 |
-
print(index)
|
26 |
-
print(torch.cuda.get_device_name(index))
|
27 |
from main.inference import Inferer
|
28 |
inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
|
29 |
|
30 |
-
@spaces.GPU(enable_queue=True, duration=300)
|
31 |
def infer(video_input, in_threshold=0.5, num_people="Single person", render_mesh=False):
|
32 |
# from main.inference import Inferer
|
33 |
# inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
|
@@ -68,24 +68,24 @@ def infer(video_input, in_threshold=0.5, num_people="Single person", render_mesh
|
|
68 |
yield img, video_path, save_mesh_file, save_smplx_file
|
69 |
|
70 |
TITLE = '''<h1 align="center">SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation</h1>'''
|
71 |
-
VIDEO = '''
|
72 |
-
<center><iframe width="960" height="540"
|
73 |
-
src="https://www.youtube.com/embed/DepTqbPpVzY?si=qSeQuX-bgm_rON7E"title="SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen>
|
74 |
-
</iframe>
|
75 |
-
</center><br>'''
|
76 |
-
DESCRIPTION = '''
|
77 |
-
<b>Official Gradio demo</b> for <a href="https://caizhongang.com/projects/SMPLer-X/"><b>SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation</b></a>.<br>
|
78 |
-
<p>
|
79 |
-
Note: You can drop a video at the panel (or select one of the examples)
|
80 |
-
to obtain the 3D parametric reconstructions of the detected humans.
|
81 |
-
</p>
|
82 |
-
'''
|
83 |
|
84 |
with gr.Blocks(title="SMPLer-X", css=".gradio-container") as demo:
|
85 |
|
86 |
gr.Markdown(TITLE)
|
87 |
-
gr.HTML(VIDEO)
|
88 |
-
gr.Markdown(DESCRIPTION)
|
89 |
|
90 |
with gr.Row():
|
91 |
with gr.Column():
|
@@ -101,7 +101,7 @@ with gr.Blocks(title="SMPLer-X", css=".gradio-container") as demo:
|
|
101 |
scale=1,)
|
102 |
gr.HTML("""<br/>""")
|
103 |
mesh_as_vertices = gr.Checkbox(
|
104 |
-
label="Render as mesh",
|
105 |
info="By default, the estimated SMPL-X parameters are rendered as vertices for faster visualization. Check this option if you want to visualize meshes instead.",
|
106 |
interactive=True,
|
107 |
scale=1,)
|
@@ -119,18 +119,18 @@ with gr.Blocks(title="SMPLer-X", css=".gradio-container") as demo:
|
|
119 |
# example_images = gr.Examples([])
|
120 |
send_button.click(fn=infer, inputs=[video_input, threshold, num_people, mesh_as_vertices], outputs=[processed_frames, video_output, meshes_output, smplx_output])
|
121 |
# with gr.Row():
|
122 |
-
example_videos = gr.Examples([
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
|
135 |
#demo.queue()
|
136 |
demo.queue().launch(debug=True)
|
|
|
6 |
import gradio as gr
|
7 |
import torch
|
8 |
import math
|
9 |
+
# import spaces
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
try:
|
12 |
import mmpose
|
13 |
except:
|
14 |
+
os.system('pip install /Volumes/zzz/smplerx2/main/transformer_utils')
|
15 |
+
# hf_hub_download(repo_id="caizhongang/SMPLer-X", filename="smpler_x_h32.pth.tar", local_dir="/home/user/app/pretrained_models")
|
16 |
+
#os.system('cp -rf /home/user/app/assets/conversions.py /home/user/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torchgeometry/core/conversions.py')
|
17 |
+
DEFAULT_MODEL='smpler_x_s32'
|
18 |
+
OUT_FOLDER = '/home/ztx/Downloads/smplerx2/output'
|
19 |
os.makedirs(OUT_FOLDER, exist_ok=True)
|
20 |
num_gpus = 1 if torch.cuda.is_available() else -1
|
21 |
+
print("!!!", torch.cuda.is_available())
|
22 |
+
print(torch.cuda.device_count())
|
23 |
+
print(torch.version.cuda)
|
24 |
+
#index = torch.cuda.current_device()
|
25 |
+
#print(index)
|
26 |
+
#print(torch.cuda.get_device_name(index))
|
27 |
from main.inference import Inferer
|
28 |
inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
|
29 |
|
30 |
+
# @spaces.GPU(enable_queue=True, duration=300)
|
31 |
def infer(video_input, in_threshold=0.5, num_people="Single person", render_mesh=False):
|
32 |
# from main.inference import Inferer
|
33 |
# inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
|
|
|
68 |
yield img, video_path, save_mesh_file, save_smplx_file
|
69 |
|
70 |
TITLE = '''<h1 align="center">SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation</h1>'''
|
71 |
+
# VIDEO = '''
|
72 |
+
# <center><iframe width="960" height="540"
|
73 |
+
# src="https://www.youtube.com/embed/DepTqbPpVzY?si=qSeQuX-bgm_rON7E"title="SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen>
|
74 |
+
# </iframe>
|
75 |
+
# </center><br>'''
|
76 |
+
# DESCRIPTION = '''
|
77 |
+
# <b>Official Gradio demo</b> for <a href="https://caizhongang.com/projects/SMPLer-X/"><b>SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation</b></a>.<br>
|
78 |
+
# <p>
|
79 |
+
# Note: You can drop a video at the panel (or select one of the examples)
|
80 |
+
# to obtain the 3D parametric reconstructions of the detected humans.
|
81 |
+
# </p>
|
82 |
+
# '''
|
83 |
|
84 |
with gr.Blocks(title="SMPLer-X", css=".gradio-container") as demo:
|
85 |
|
86 |
gr.Markdown(TITLE)
|
87 |
+
# gr.HTML(VIDEO)
|
88 |
+
# gr.Markdown(DESCRIPTION)
|
89 |
|
90 |
with gr.Row():
|
91 |
with gr.Column():
|
|
|
101 |
scale=1,)
|
102 |
gr.HTML("""<br/>""")
|
103 |
mesh_as_vertices = gr.Checkbox(
|
104 |
+
label="Render as mesh",
|
105 |
info="By default, the estimated SMPL-X parameters are rendered as vertices for faster visualization. Check this option if you want to visualize meshes instead.",
|
106 |
interactive=True,
|
107 |
scale=1,)
|
|
|
119 |
# example_images = gr.Examples([])
|
120 |
send_button.click(fn=infer, inputs=[video_input, threshold, num_people, mesh_as_vertices], outputs=[processed_frames, video_output, meshes_output, smplx_output])
|
121 |
# with gr.Row():
|
122 |
+
# example_videos = gr.Examples([
|
123 |
+
# ['/home/user/app/assets/01.mp4'],
|
124 |
+
# ['/home/user/app/assets/02.mp4'],
|
125 |
+
# ['/home/user/app/assets/03.mp4'],
|
126 |
+
# ['/home/user/app/assets/04.mp4'],
|
127 |
+
# ['/home/user/app/assets/05.mp4'],
|
128 |
+
# ['/home/user/app/assets/06.mp4'],
|
129 |
+
# ['/home/user/app/assets/07.mp4'],
|
130 |
+
# ['/home/user/app/assets/08.mp4'],
|
131 |
+
# ['/home/user/app/assets/09.mp4'],
|
132 |
+
# ],
|
133 |
+
# inputs=[video_input, 0.5])
|
134 |
|
135 |
#demo.queue()
|
136 |
demo.queue().launch(debug=True)
|