|
import gradio as gr |
|
import torch |
|
import yt_dlp |
|
import os |
|
import subprocess |
|
import json |
|
from threading import Thread |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import spaces |
|
import moviepy.editor as mp |
|
import time |
|
import langdetect |
|
import uuid |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
print("Starting the program...") |
|
|
|
model_path = "internlm/internlm2_5-7b-chat" |
|
print(f"Loading model {model_path}...") |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda() |
|
model = model.eval() |
|
print("Model successfully loaded.") |
|
|
|
def generate_unique_filename(extension): |
|
return f"{uuid.uuid4()}{extension}" |
|
|
|
def cleanup_files(*files): |
|
for file in files: |
|
if file and os.path.exists(file): |
|
os.remove(file) |
|
print(f"Removed file: {file}") |
|
|
|
def download_youtube_audio(url): |
|
print(f"Downloading audio from YouTube: {url}") |
|
output_path = generate_unique_filename(".wav") |
|
ydl_opts = { |
|
'format': 'bestaudio/best', |
|
'postprocessors': [{ |
|
'key': 'FFmpegExtractAudio', |
|
'preferredcodec': 'wav', |
|
}], |
|
'outtmpl': output_path, |
|
'keepvideo': True, |
|
} |
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl: |
|
ydl.download([url]) |
|
|
|
|
|
if os.path.exists(output_path + ".wav"): |
|
os.rename(output_path + ".wav", output_path) |
|
|
|
if os.path.exists(output_path): |
|
print(f"Audio download completed. File saved at: {output_path}") |
|
print(f"File size: {os.path.getsize(output_path)} bytes") |
|
else: |
|
print(f"Error: File {output_path} not found after download.") |
|
|
|
return output_path |
|
|
|
@spaces.GPU(duration=90) |
|
def transcribe_audio(file_path): |
|
print(f"Starting transcription of file: {file_path}") |
|
temp_audio = None |
|
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')): |
|
print("Video file detected. Extracting audio...") |
|
try: |
|
video = mp.VideoFileClip(file_path) |
|
temp_audio = generate_unique_filename(".wav") |
|
video.audio.write_audiofile(temp_audio) |
|
file_path = temp_audio |
|
except Exception as e: |
|
print(f"Error extracting audio from video: {e}") |
|
raise |
|
|
|
print(f"Does the file exist? {os.path.exists(file_path)}") |
|
print(f"File size: {os.path.getsize(file_path) if os.path.exists(file_path) else 'N/A'} bytes") |
|
|
|
output_file = generate_unique_filename(".json") |
|
command = [ |
|
"insanely-fast-whisper", |
|
"--file-name", file_path, |
|
"--device-id", "0", |
|
"--model-name", "openai/whisper-large-v3", |
|
"--task", "transcribe", |
|
"--timestamp", "chunk", |
|
"--transcript-path", output_file |
|
] |
|
print(f"Executing command: {' '.join(command)}") |
|
try: |
|
result = subprocess.run(command, check=True, capture_output=True, text=True) |
|
print(f"Standard output: {result.stdout}") |
|
print(f"Error output: {result.stderr}") |
|
except subprocess.CalledProcessError as e: |
|
print(f"Error running insanely-fast-whisper: {e}") |
|
print(f"Standard output: {e.stdout}") |
|
print(f"Error output: {e.stderr}") |
|
raise |
|
|
|
print(f"Reading transcription file: {output_file}") |
|
try: |
|
with open(output_file, "r") as f: |
|
transcription = json.load(f) |
|
except json.JSONDecodeError as e: |
|
print(f"Error decoding JSON: {e}") |
|
print(f"File content: {open(output_file, 'r').read()}") |
|
raise |
|
|
|
if "text" in transcription: |
|
result = transcription["text"] |
|
else: |
|
result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])]) |
|
|
|
print("Transcription completed.") |
|
|
|
|
|
cleanup_files(output_file) |
|
if temp_audio: |
|
cleanup_files(temp_audio) |
|
|
|
return result |
|
|
|
@spaces.GPU(duration=90) |
|
def generate_summary_stream(transcription): |
|
print("Starting summary generation...") |
|
print(f"Transcription length: {len(transcription)} characters") |
|
|
|
detected_language = langdetect.detect(transcription) |
|
|
|
prompt = f"""Summarize the following video transcription in 150-300 words. |
|
The summary should be in the same language as the transcription, which is detected as {detected_language}. |
|
Please ensure that the summary captures the main points and key ideas of the transcription: |
|
|
|
{transcription[:300000]}...""" |
|
|
|
response, history = model.chat(tokenizer, prompt, history=[]) |
|
print(f"Final summary generated: {response[:100]}...") |
|
print("Summary generation completed.") |
|
return response |
|
|
|
def process_youtube(url): |
|
if not url: |
|
print("YouTube URL not provided.") |
|
return "Please enter a YouTube URL.", None |
|
print(f"Processing YouTube URL: {url}") |
|
|
|
audio_file = None |
|
try: |
|
audio_file = download_youtube_audio(url) |
|
if not os.path.exists(audio_file): |
|
raise FileNotFoundError(f"File {audio_file} does not exist after download.") |
|
|
|
print(f"Audio file found: {audio_file}") |
|
print("Starting transcription...") |
|
transcription = transcribe_audio(audio_file) |
|
print(f"Transcription completed. Length: {len(transcription)} characters") |
|
return transcription, None |
|
except Exception as e: |
|
print(f"Error processing YouTube: {e}") |
|
return f"Processing error: {str(e)}", None |
|
finally: |
|
if audio_file and os.path.exists(audio_file): |
|
cleanup_files(audio_file) |
|
print(f"Directory content after processing: {os.listdir('.')}") |
|
|
|
def process_uploaded_video(video_path): |
|
print(f"Processing uploaded video: {video_path}") |
|
try: |
|
print("Starting transcription...") |
|
transcription = transcribe_audio(video_path) |
|
print(f"Transcription completed. Length: {len(transcription)} characters") |
|
return transcription, None |
|
except Exception as e: |
|
print(f"Error processing video: {e}") |
|
return f"Processing error: {str(e)}", None |
|
|
|
print("Setting up Gradio interface...") |
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown( |
|
""" |
|
# 🎥 Video Transcription and Smart Summary |
|
|
|
Upload a video or provide a YouTube link to get a transcription and AI-generated summary. HF Zero GPU has a usage time limit. So if you want to run longer videos I recommend you clone the space. Remove @Spaces.gpu from the code and run it locally on your GPU! |
|
""" |
|
) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("📤 Video Upload"): |
|
video_input = gr.Video(label="Drag and drop or click to upload") |
|
video_button = gr.Button("🚀 Process Video", variant="primary") |
|
|
|
with gr.TabItem("🔗 YouTube Link"): |
|
url_input = gr.Textbox(label="Paste YouTube URL here", placeholder="https://www.youtube.com/watch?v=...") |
|
url_button = gr.Button("🚀 Process URL", variant="primary") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True) |
|
with gr.Column(): |
|
summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True) |
|
|
|
summary_button = gr.Button("📝 Generate Summary", variant="secondary") |
|
|
|
gr.Markdown( |
|
""" |
|
### How to use: |
|
1. Upload a video or paste a YouTube link. |
|
2. Click 'Process' to get the transcription. |
|
3. Click 'Generate Summary' to get a summary of the content. |
|
|
|
*Note: Processing may take a few minutes depending on the video length.* |
|
""" |
|
) |
|
|
|
def process_video_and_update(video): |
|
if video is None: |
|
return "No video uploaded.", "Please upload a video." |
|
print(f"Video received: {video}") |
|
transcription, _ = process_uploaded_video(video) |
|
print(f"Returned transcription: {transcription[:100] if transcription else 'No transcription generated'}...") |
|
return transcription or "Transcription error", "" |
|
|
|
video_button.click(process_video_and_update, inputs=[video_input], outputs=[transcription_output, summary_output]) |
|
url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output]) |
|
summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output]) |
|
|
|
print("Launching Gradio interface...") |
|
demo.launch() |
|
|