File size: 2,976 Bytes
ed0dca2 a40632d bdf3e70 b1cf10f bdf3e70 ed0dca2 b1cf10f a40632d b1cf10f a40632d c59143e a40632d bdf3e70 ed0dca2 52589e7 3bd828b 6411d86 3bd828b c59143e 5aa180d 3bd828b 5aa180d 3bd828b 5aa180d 3bd828b 5aa180d c59143e 5aa180d c59143e 3bd828b c59143e 52589e7 c59143e 52589e7 c59143e 52589e7 c59143e 52589e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
##################################### Imports ######################################
# Generic imports
import gradio as gr
import json
import os
########################### Global objects and functions ###########################
def get_json_cfg():
"""Retrieve configuration file"""
config_path = os.getenv('CONFIG_PATH')
with open(config_path, 'r') as file:
config = json.load(file)
return config
conf = get_json_cfg()
def greet(model_name, prompt_template, name, dataset):
return f"Hello {name}!! Using model: {model_name} with template: {prompt_template}"
##################################### App UI #######################################
with gr.Blocks() as demo:
##### Title Block #####
gr.Markdown("# Instruction Tuning with Unsloth")
##### Model Inputs #####
# Select Model
model_name = gr.Dropdown(label="Model", choices=conf['model']['choices'], value="gpt2")
# Prompt template
prompt_template = gr.Textbox(label="Prompt Template", value="Instruction: {0}\nOutput: {1}")
# Prompt Input
name_input = gr.Textbox(label="Your Name")
# Dataset choice
dataset_choice = gr.Radio(label="Choose Dataset", choices=["Predefined Dataset", "Upload Your Own"], value="Predefined Dataset")
dataset_predefined = gr.Dropdown(label="Predefined Dataset", choices=['1', '2', '3'], value='1', visible=True)
dataset_upload = gr.UploadButton(label="Upload Dataset", file_types=[".pdf",".csv",".jsonl"], visible=False) # gr.File(label="Upload Dataset", visible=False)
radio = gr.Radio(["show", "hide"], label="Choose")
text = gr.Textbox(label="This text only shows when 'show' is selected.", visible=False)
# Update visibility based on user choice
def update_visibility(radio):
value = radio.value # Get the selected value from the radio button
if value == "Predefined Dataset":
dataset_predefined.visible = True
dataset_upload.visible = False
elif value == "Upload Your Own":
dataset_predefined.visible = False
dataset_upload.visible = True
# Bind the update_visibility function to the change event of dataset_choice
dataset_choice.change(update_visibility)
# Update visibility based on user choice
#dataset_predefined, dataset_upload = dataset_choice.change(update_dataset_visibility, inputs=[dataset_choice], outputs=[dataset_predefined, dataset_upload])
##### Model Outputs #####
# Text output
output = gr.Textbox(label="Output")
##### Execution #####
# Setup button
tune_btn = gr.Button("Start Fine Tuning")
# Execute button
tune_btn.click(fn=greet,
inputs=[model_name, prompt_template, name_input, dataset_predefined],
outputs=output)
##################################### Launch #######################################
if __name__ == "__main__":
demo.launch()
|