File size: 3,087 Bytes
ed0dca2
a40632d
bdf3e70
b1cf10f
 
bdf3e70
ed0dca2
b1cf10f
 
 
 
a40632d
b1cf10f
 
 
a40632d
 
c59143e
a40632d
bdf3e70
ed0dca2
52589e7
 
 
 
 
 
 
 
 
 
 
 
 
 
3bd828b
 
 
 
 
 
 
 
 
6411d86
3bd828b
c59143e
3bd828b
 
 
 
68cc4d6
 
3bd828b
68cc4d6
 
3bd828b
 
 
 
 
c59143e
 
 
3bd828b
c59143e
 
52589e7
c59143e
52589e7
c59143e
 
52589e7
 
 
c59143e
 
 
 
52589e7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
##################################### Imports ######################################
# Generic imports
import gradio as gr
import json
import os

########################### Global objects and functions ###########################

def get_json_cfg():
    """Retrieve configuration file"""
    config_path = os.getenv('CONFIG_PATH')
    with open(config_path, 'r') as file:
        config = json.load(file)
    return config

conf = get_json_cfg()

def greet(model_name, prompt_template, name, dataset):
    return f"Hello {name}!! Using model: {model_name} with template: {prompt_template}"

##################################### App UI #######################################
with gr.Blocks() as demo:

    ##### Title Block #####
    gr.Markdown("# Instruction Tuning with Unsloth")

    ##### Model Inputs #####

    # Select Model
    model_name = gr.Dropdown(label="Model", choices=conf['model']['choices'], value="gpt2")
    # Prompt template
    prompt_template = gr.Textbox(label="Prompt Template", value="Instruction: {0}\nOutput: {1}")
    # Prompt Input
    name_input = gr.Textbox(label="Your Name")
    # Dataset choice
    dataset_choice = gr.Radio(label="Choose Dataset", choices=["Predefined Dataset", "Upload Your Own"], value="Predefined Dataset")
    dataset_predefined = gr.Dropdown(label="Predefined Dataset", choices=['1', '2', '3'], value='1', visible=True)
    dataset_upload = gr.UploadButton(label="Upload Dataset", file_types=[".pdf",".csv",".jsonl"], visible=False) # gr.File(label="Upload Dataset", visible=False)

    

    
    radio = gr.Radio(["show", "hide"], label="Choose")
    text = gr.Textbox(label="This text only shows when 'show' is selected.", visible=False)
    

    
    def update_visibility(radio):  # Accept the event argument, even if not used
        value = radio.value  # Get the selected value from the radio button
        
        if value == "Predefined Dataset":
            predef = gr.Dropdown.update(visible=bool(1))
            upload = gr.UploadButton.update(visible=bool(0))
        elif value == "Upload Your Own":
            predef = gr.Dropdown.update(visible=bool(0))
            upload = gr.UploadButton.update(visible=bool(1))
        return predef, upload  # Return both components

    dataset_predefined, dataset_upload = dataset_choice.change(update_visibility, dataset_choice, dataset_upload)


    
    
    # Update visibility based on user choice
    #dataset_predefined, dataset_upload = dataset_choice.change(update_dataset_visibility, inputs=[dataset_choice], outputs=[dataset_predefined, dataset_upload])
    
    ##### Model Outputs #####

    # Text output
    output = gr.Textbox(label="Output")
    
    ##### Execution #####

    # Setup button
    tune_btn = gr.Button("Start Fine Tuning")
    # Execute button
    tune_btn.click(fn=greet, 
                   inputs=[model_name, prompt_template, name_input, dataset_predefined],
                   outputs=output)

##################################### Launch #######################################

if __name__ == "__main__":
    demo.launch()