File size: 2,815 Bytes
ed0dca2
a40632d
bdf3e70
b1cf10f
 
bdf3e70
ed0dca2
b1cf10f
 
 
 
a40632d
b1cf10f
 
 
a40632d
 
c59143e
a40632d
bdf3e70
ed0dca2
52589e7
 
 
 
 
 
 
 
 
 
 
 
 
 
950e3db
 
 
6411d86
c59143e
 
 
 
 
 
 
 
 
7c30774
c59143e
 
7c30774
c59143e
 
 
 
 
52589e7
c59143e
52589e7
c59143e
 
52589e7
 
 
c59143e
 
 
 
52589e7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
##################################### Imports ######################################
# Generic imports
import gradio as gr
import json
import os

########################### Global objects and functions ###########################

def get_json_cfg():
    """Retrieve configuration file"""
    config_path = os.getenv('CONFIG_PATH')
    with open(config_path, 'r') as file:
        config = json.load(file)
    return config

conf = get_json_cfg()

def greet(model_name, prompt_template, name, dataset):
    return f"Hello {name}!! Using model: {model_name} with template: {prompt_template}"

##################################### App UI #######################################
with gr.Blocks() as demo:

    ##### Title Block #####
    gr.Markdown("# Instruction Tuning with Unsloth")

    ##### Model Inputs #####

    # Select Model
    model_name = gr.Dropdown(label="Model", choices=conf['model']['choices'], value="gpt2")
    # Prompt template
    prompt_template = gr.Textbox(label="Prompt Template", value="Instruction: {0}\nOutput: {1}")
    # Prompt Input
    name_input = gr.Textbox(label="Your Name")
    # Dataset choice
    dataset_choice = gr.Radio(label="Choose Dataset", choices=["Predefined Dataset", "Upload Your Own"], value="Upload Your Own")
    dataset_predefined = gr.Dropdown(label="Predefined Dataset", choices=['1', '2', '3'], value='1', visible=False)
    dataset_upload = gr.UploadButton(label="Upload Dataset", file_types=[".pdf",".csv",".doc"], visible=True) # gr.File(label="Upload Dataset", visible=False)
    
    
    # Function to update visibility based on user choice
    def update_dataset_visibility(choice):
        if choice == "Predefined Dataset":
            dataset_predefined.visible = True
            dataset_upload.visible = False
        elif choice == "Upload Your Own":
            dataset_predefined.visible = False
            dataset_upload.visible = True
        return dataset_predefined, dataset_upload  # Return both components
    
    # Initial call to set visibility based on default choice
    dataset_predefined, dataset_upload = update_dataset_visibility(dataset_choice.value)
    
    # Update visibility based on user choice
    dataset_choice.change(update_dataset_visibility, inputs=[dataset_choice], outputs=[dataset_predefined, dataset_upload])
    
    ##### Model Outputs #####

    # Text output
    output = gr.Textbox(label="Output")
    
    ##### Execution #####

    # Setup button
    tune_btn = gr.Button("Start Fine Tuning")
    # Execute button
    tune_btn.click(fn=greet, 
                   inputs=[model_name, prompt_template, name_input, dataset_predefined],
                   outputs=output)

##################################### Launch #######################################

if __name__ == "__main__":
    demo.launch()