CodeX / app.py
typesdigital's picture
Update app.py
2a0f2b0
raw
history blame
1.66 kB
# Import the required libraries
import nltk
import spacy
import tensorflow as tf
import numpy as np
from tensorflow.keras.layers import Input, Dense, LSTM, Embedding, Dropout
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer
# Load the language model
nlp = spacy.load('en_core_web_sm')
# Define the neural network architecture
num_words = 10000
embedding_dim = 128
lstm_units = 128
dropout_rate = 0.2
num_classes = 10
input_text = Input(shape=(None,))
embedding_layer = Embedding(input_dim=num_words, output_dim=embedding_dim)(input_text)
lstm_layer = LSTM(units=lstm_units)(embedding_layer)
dropout_layer = Dropout(rate=dropout_rate)(lstm_layer)
output_layer = Dense(units=num_classes, activation='softmax')(dropout_layer)
# Compile the model
learning_rate = 0.001
model = Model(inputs=input_text, outputs=output_layer)
model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=learning_rate), metrics=['accuracy'])
# Train the model
batch_size = 32
num_epochs = 10
model.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size=batch_size, epochs=num_epochs)
# Define the function for providing feedback and corrections
def provide_feedback(code):
# Use NLP to analyze code syntax and structure
doc = nlp(code)
# Use machine learning to classify code errors and suggest corrections
# ...
# Use deep learning to generate new code that fixes errors
# ...
# Return the corrected code and feedback to the user
return corrected_code, feedback_message