Spaces:
Runtime error
Runtime error
Commit
·
fc7f7f8
1
Parent(s):
aa0f6de
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import the required libraries
|
2 |
+
import nltk
|
3 |
+
import spacy
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow.keras.layers import Input, Dense, LSTM, Embedding, Dropout
|
6 |
+
from tensorflow.keras.models import Model
|
7 |
+
from tensorflow.keras.optimizers import Adam
|
8 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
9 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
10 |
+
|
11 |
+
# Load the language model
|
12 |
+
nlp = spacy.load('en_core_web_sm')
|
13 |
+
|
14 |
+
# Define the neural network architecture
|
15 |
+
input_text = Input(shape=(None,))
|
16 |
+
embedding_layer = Embedding(input_dim=num_words, output_dim=embedding_dim)(input_text)
|
17 |
+
lstm_layer = LSTM(units=lstm_units)(embedding_layer)
|
18 |
+
dropout_layer = Dropout(rate=dropout_rate)(lstm_layer)
|
19 |
+
output_layer = Dense(units=num_classes, activation='softmax')(dropout_layer)
|
20 |
+
|
21 |
+
# Compile the model
|
22 |
+
model = Model(inputs=input_text, outputs=output_layer)
|
23 |
+
model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=learning_rate), metrics=['accuracy'])
|
24 |
+
|
25 |
+
# Train the model
|
26 |
+
model.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size=batch_size, epochs=num_epochs)
|
27 |
+
|
28 |
+
# Define the function for providing feedback and corrections
|
29 |
+
def provide_feedback(code):
|
30 |
+
# Use NLP to analyze code syntax and structure
|
31 |
+
doc = nlp(code)
|
32 |
+
# Use machine learning to classify code errors and suggest corrections
|
33 |
+
# ...
|
34 |
+
# Use deep learning to generate new code that fixes errors
|
35 |
+
# ...
|
36 |
+
# Return the corrected code and feedback to the user
|
37 |
+
return corrected_code, feedback_message
|