typesdigital commited on
Commit
fc7f7f8
·
1 Parent(s): aa0f6de

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -0
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import the required libraries
2
+ import nltk
3
+ import spacy
4
+ import tensorflow as tf
5
+ from tensorflow.keras.layers import Input, Dense, LSTM, Embedding, Dropout
6
+ from tensorflow.keras.models import Model
7
+ from tensorflow.keras.optimizers import Adam
8
+ from tensorflow.keras.preprocessing.sequence import pad_sequences
9
+ from tensorflow.keras.preprocessing.text import Tokenizer
10
+
11
+ # Load the language model
12
+ nlp = spacy.load('en_core_web_sm')
13
+
14
+ # Define the neural network architecture
15
+ input_text = Input(shape=(None,))
16
+ embedding_layer = Embedding(input_dim=num_words, output_dim=embedding_dim)(input_text)
17
+ lstm_layer = LSTM(units=lstm_units)(embedding_layer)
18
+ dropout_layer = Dropout(rate=dropout_rate)(lstm_layer)
19
+ output_layer = Dense(units=num_classes, activation='softmax')(dropout_layer)
20
+
21
+ # Compile the model
22
+ model = Model(inputs=input_text, outputs=output_layer)
23
+ model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=learning_rate), metrics=['accuracy'])
24
+
25
+ # Train the model
26
+ model.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size=batch_size, epochs=num_epochs)
27
+
28
+ # Define the function for providing feedback and corrections
29
+ def provide_feedback(code):
30
+ # Use NLP to analyze code syntax and structure
31
+ doc = nlp(code)
32
+ # Use machine learning to classify code errors and suggest corrections
33
+ # ...
34
+ # Use deep learning to generate new code that fixes errors
35
+ # ...
36
+ # Return the corrected code and feedback to the user
37
+ return corrected_code, feedback_message