Spaces:
Runtime error
Runtime error
Commit
Β·
9838f6d
1
Parent(s):
61aa933
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nltk
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
|
6 |
+
nltk.download('punkt')
|
7 |
+
nltk.download('stopwords')
|
8 |
+
|
9 |
+
from nltk.tokenize import word_tokenize
|
10 |
+
from nltk.corpus import stopwords
|
11 |
+
|
12 |
+
# Preprocess text
|
13 |
+
def preprocess_text(text):
|
14 |
+
text = text.lower() # Convert to lowercase
|
15 |
+
words = word_tokenize(text) # Tokenize text
|
16 |
+
words = [word for word in words if word.isalnum()] # Remove non-alphanumeric characters
|
17 |
+
words = [word for word in words if word not in stopwords.words('english')] # Remove stopwords
|
18 |
+
return ' '.join(words)
|
19 |
+
|
20 |
+
# Calculate text similarity using TF-IDF and cosine similarity
|
21 |
+
def calculate_similarity(text1, text2):
|
22 |
+
preprocessed_text1 = preprocess_text(text1)
|
23 |
+
preprocessed_text2 = preprocess_text(text2)
|
24 |
+
|
25 |
+
tfidf_vectorizer = TfidfVectorizer()
|
26 |
+
tfidf_matrix = tfidf_vectorizer.fit_transform([preprocessed_text1, preprocessed_text2])
|
27 |
+
|
28 |
+
return cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
|
29 |
+
|
30 |
+
# Replace 'text1' and 'text2' with the text you want to compare
|
31 |
+
text1 = "This is the original text."
|
32 |
+
text2 = "π£ Exciting news! π The Falcon 180B has landed, revolutionizing the world of open LLMs. π¦
Want to know how to deploy it on Amazon SageMaker? Check out this informative blog post by Philipp Schmid, Technical Lead at Hugging Face and AWS ML HERO. π€ Get insights on setting up your dev environment, hardware requirements, running inferences, and more. Don't miss out! Read the full article here π Deploy Falcon 180B on Amazon SageMaker. Stay tuned for more Falcon 180B updates! π #AI #MachineLearning #AmazonSageMaker."
|
33 |
+
|
34 |
+
# Calculate text similarity
|
35 |
+
similarity = calculate_similarity(text1, text2)
|
36 |
+
|
37 |
+
# Set a threshold for plagiarism detection (adjust as needed)
|
38 |
+
threshold = 0.8
|
39 |
+
|
40 |
+
# Check if the similarity exceeds the threshold
|
41 |
+
if similarity >= threshold:
|
42 |
+
print("Plagiarism detected!")
|
43 |
+
else:
|
44 |
+
print("No plagiarism detected.")
|
45 |
+
|