File size: 1,074 Bytes
c7f3bef
 
 
 
 
 
 
aeab1f2
c7f3bef
 
 
 
3e75990
c7f3bef
 
 
 
 
 
aeab1f2
c7f3bef
 
 
 
3e75990
c7f3bef
3e75990
 
 
 
c7f3bef
 
 
 
3e75990
c7f3bef
 
3e75990
 
c7f3bef
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import gradio as gr
import fitz
import os
import zipfile
from donut import DonutModel

def process(input_pdf):
    
    # Conversion of PDF to JPG images
    pdf = fitz.open(input_pdf)
    first_page = pdf[0]
    pix = first_page.get_pixmap()
    image_bytes = pix.tobytes("png")
    pdf.close()

    temp_dir = "images"
    basename = os.path.basename(input_pdf).split('.')[0]
    image_name = basename + "jpg"
    os.makedirs(temp_dir, exist_ok=True)
    
    with open(os.path.join(temp_dir, image_name), "wb") as f:
        f.write(image_bytes)
    
    image_path = os.path.join(temp_dir, image_name)
    
    output = model.inference(image=image_path, prompt=task_prompt)["predictions"][0]

    os.remove(image_path)
    os.rmdir(temp_dir)
    
    return output

task_name = "SGSInvoice"
task_prompt = f"<s_{task_name}>"

model = DonutModel.from_pretrained("uartimcs/donut-invoice-extract")
model.eval()

demo = gr.Interface(fn=process,inputs=gr.File(label="Upload PDF File"),outputs="json", title=f"Donut 🍩 demonstration for `{task_name}` task",)
demo.launch()