File size: 14,704 Bytes
deafbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69eba4f
 
 
97368fe
32870ab
fc5cfc2
72d2b0a
f054738
 
 
 
72d2b0a
f054738
 
72d2b0a
f054738
72d2b0a
 
deafbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fc8296
 
 
 
deafbd7
 
 
 
 
e8c93cf
deafbd7
 
1a0ceea
deafbd7
 
 
 
 
 
 
 
 
f054738
 
9317cc1
f054738
fceffca
9317cc1
 
 
8f16014
9317cc1
 
f054738
 
9317cc1
 
f054738
 
 
deafbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1da9b34
deafbd7
 
 
 
 
 
 
 
 
 
 
 
1da9b34
 
 
 
 
 
dce9090
1da9b34
 
 
deafbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1da9b34
 
 
deafbd7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import mimetypes
import os
import re
import shutil
from typing import Optional

from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available

from Code_Functions import speak_text


#from jokes import gradio_search_jokes

# from app import agent  # Импортируем объект агента

# def gradio_search_jokes(word):
#     """Wrapper function that sends the request to the agent and retrieves the joke and its audio."""
#     response = self.agent.run(word)  # Отправляем запрос агенту
#     response_text = response.get("final_answer", "No response from agent.")  # Получаем текст ответа

#     # Генерируем аудио
#     audio_file = speak_text(response_text)

#     return response_text, audio_file



def pull_messages_from_step(
    step_log: MemoryStep,
):
    """Extract ChatMessage objects from agent steps with proper nesting"""
    import gradio as gr

    if isinstance(step_log, ActionStep):
        # Output the step number
        step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
        yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")

        # First yield the thought/reasoning from the LLM
        if hasattr(step_log, "model_output") and step_log.model_output is not None:
            # Clean up the LLM output
            model_output = step_log.model_output.strip()
            # Remove any trailing <end_code> and extra backticks, handling multiple possible formats
            model_output = re.sub(r"```\s*<end_code>", "```", model_output)  # handles ```<end_code>
            model_output = re.sub(r"<end_code>\s*```", "```", model_output)  # handles <end_code>```
            model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output)  # handles ```\n<end_code>
            model_output = model_output.strip()
            yield gr.ChatMessage(role="assistant", content=model_output)

        # For tool calls, create a parent message
        if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
            first_tool_call = step_log.tool_calls[0]
            used_code = first_tool_call.name == "python_interpreter"
            parent_id = f"call_{len(step_log.tool_calls)}"

            # Tool call becomes the parent message with timing info
            # First we will handle arguments based on type
            args = first_tool_call.arguments
            if isinstance(args, dict):
                content = str(args.get("answer", str(args)))
            else:
                content = str(args).strip()

            if used_code:
                # Clean up the content by removing any end code tags
                content = re.sub(r"```.*?\n", "", content)  # Remove existing code blocks
                content = re.sub(r"\s*<end_code>\s*", "", content)  # Remove end_code tags
                content = content.strip()
                if not content.startswith("```python"):
                    content = f"```python\n{content}\n```"

            parent_message_tool = gr.ChatMessage(
                role="assistant",
                content=content,
                metadata={
                    "title": f"🛠️ Used tool {first_tool_call.name}",
                    "id": parent_id,
                    "status": "pending",
                },
            )
            yield parent_message_tool

            # Nesting execution logs under the tool call if they exist
            if hasattr(step_log, "observations") and (
                step_log.observations is not None and step_log.observations.strip()
            ):  # Only yield execution logs if there's actual content
                log_content = step_log.observations.strip()
                if log_content:
                    log_content = re.sub(r"^Execution logs:\s*", "", log_content)
                    yield gr.ChatMessage(
                        role="assistant",
                        content=f"{log_content}",
                        metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
                    )

            # Nesting any errors under the tool call
            if hasattr(step_log, "error") and step_log.error is not None:
                yield gr.ChatMessage(
                    role="assistant",
                    content=str(step_log.error),
                    metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
                )

            # Update parent message metadata to done status without yielding a new message
            parent_message_tool.metadata["status"] = "done"

        # Handle standalone errors but not from tool calls
        elif hasattr(step_log, "error") and step_log.error is not None:
            yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})

        # Calculate duration and token information
        step_footnote = f"{step_number}"
        if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
            token_str = (
                f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
            )
            step_footnote += token_str
        if hasattr(step_log, "duration"):
            step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
            step_footnote += step_duration
        step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
        yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
        yield gr.ChatMessage(role="assistant", content="-----")


def stream_to_gradio(
    agent,
    task: str,
    reset_agent_memory: bool = False,
    additional_args: Optional[dict] = None,
):
    """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
    if not _is_package_available("gradio"):
        raise ModuleNotFoundError(
            "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
        )
    import gradio as gr

    total_input_tokens = 0
    total_output_tokens = 0

    for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
        # Track tokens if model provides them
        if hasattr(agent.model, "last_input_token_count"):
            total_input_tokens += agent.model.last_input_token_count
            total_output_tokens += agent.model.last_output_token_count
            if isinstance(step_log, ActionStep):
                step_log.input_token_count = agent.model.last_input_token_count
                step_log.output_token_count = agent.model.last_output_token_count

        for message in pull_messages_from_step(
            step_log,
        ):
            yield message

    final_answer = step_log  # Last log is the run's final_answer
    final_answer = handle_agent_output_types(final_answer)

    if isinstance(final_answer, AgentText):
        yield gr.ChatMessage(
            role="assistant",
            content=f"**Final answer:**\n{final_answer.to_string()}\n",
        )
    elif isinstance(final_answer, AgentImage):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "image/png"},
        )
    elif isinstance(final_answer, AgentAudio):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
    )
    else:
        yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")


class GradioUI:
    """A one-line interface to launch your agent in Gradio"""

    def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
        if not _is_package_available("gradio"):
            raise ModuleNotFoundError(
                "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
            )
        self.agent = agent
        self.file_upload_folder = file_upload_folder
        if self.file_upload_folder is not None:
            if not os.path.exists(file_upload_folder):
                os.mkdir(file_upload_folder)

    def gradio_search_jokes(self, word):  # Теперь это МЕТОД класса
        """Wrapper function that sends the request to the agent and retrieves the joke and its audio."""
        print(f"[DEBUG] Запрос к агенту: {word}")  # Отладочный вывод перед вызовом агента

        response = self.agent.run(f"Find a dad joke that contains the word: {word}")  # Запрашиваем у агента шутку
    
        print("[DEBUG] Агент вернул ответ:", response)  # Проверяем, что агент вообще что-то вернул
    
        response_text = str(response)  # Приводим объект к строке # Получаем текст ответа
        print("[DEBUG] Текст ответа:", response_text)  # Проверяем, что текст есть
    
        # Генерируем аудио
        audio_file = speak_text(response_text)
        print("[DEBUG] Аудиофайл создан:", audio_file)  # Проверяем, что аудиофайл сгенерировался
    
        return response_text, audio_file


    def interact_with_agent(self, prompt, messages):
        import gradio as gr

        messages.append(gr.ChatMessage(role="user", content=prompt))
        yield messages
        for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
            messages.append(msg)
            yield messages
        yield messages

    def upload_file(
        self,
        file,
        file_uploads_log,
        allowed_file_types=[
            "application/pdf",
            "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
            "text/plain",
        ],
    ):
        """
        Handle file uploads, default allowed types are .pdf, .docx, and .txt
        """
        import gradio as gr

        if file is None:
            return gr.Textbox("No file uploaded", visible=True), file_uploads_log

        try:
            mime_type, _ = mimetypes.guess_type(file.name)
        except Exception as e:
            return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log

        if mime_type not in allowed_file_types:
            return gr.Textbox("File type disallowed", visible=True), file_uploads_log

        # Sanitize file name
        original_name = os.path.basename(file.name)
        sanitized_name = re.sub(
            r"[^\w\-.]", "_", original_name
        )  # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores

        type_to_ext = {}
        for ext, t in mimetypes.types_map.items():
            if t not in type_to_ext:
                type_to_ext[t] = ext

        # Ensure the extension correlates to the mime type
        sanitized_name = sanitized_name.split(".")[:-1]
        sanitized_name.append("" + type_to_ext[mime_type])
        sanitized_name = "".join(sanitized_name)

        # Save the uploaded file to the specified folder
        file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
        shutil.copy(file.name, file_path)

        return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]

    def log_user_message(self, text_input, file_uploads_log):
        return (
            text_input
            + (
                f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
                if len(file_uploads_log) > 0
                else ""
            ),
            "",
        )

    def launch(self, **kwargs):
        import gradio as gr

        with gr.Blocks(fill_height=True) as demo:
                     
            stored_messages = gr.State([])
            file_uploads_log = gr.State([])
            chatbot = gr.Chatbot(
                label="Agent",
                type="messages",
                avatar_images=(
                    None,
                    "https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png",
                ),
                resizeable=True,
                scale=1,
            )

            # Добавляем dad jokes UI внутрь блока
            input_box = gr.Textbox(label="Enter a word") #added
            output_text = gr.Textbox(label="Jokes Found") #added
            output_audio = gr.Audio(label="Audio Pronunciation", type="filepath") #added
            btn = gr.Button("Get Jokes") #added
            btn.click(self.gradio_search_jokes, inputs=input_box, outputs=[output_text, output_audio]) #added


            
            # If an upload folder is provided, enable the upload feature
            if self.file_upload_folder is not None:
                upload_file = gr.File(label="Upload a file")
                upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
                upload_file.change(
                    self.upload_file,
                    [upload_file, file_uploads_log],
                    [upload_status, file_uploads_log],
                )
            text_input = gr.Textbox(lines=1, label="Chat Message")
            text_input.submit(
                self.log_user_message,
                [text_input, file_uploads_log],
                [stored_messages, text_input],
            ).then(self.interact_with_agent, [stored_messages, chatbot], [chatbot])

           

        
        demo.launch(debug=True, share=True, **kwargs)


__all__ = ["stream_to_gradio", "GradioUI"]