Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load model & tokenizer | |
MODEL_NAME = "ubiodee/Cardano_plutus" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
model.eval() | |
if torch.cuda.is_available(): | |
model.to("cuda") | |
# Response function | |
def generate_response(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=200, | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.pad_token_id, | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Remove the prompt from the output to return only the answer | |
if response.startswith(prompt): | |
response = response[len(prompt):].strip() | |
return response | |
# Gradio UI | |
demo = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus..."), | |
outputs=gr.Textbox(label="Model Response"), | |
title="Cardano Plutus AI Assistant", | |
description="Ask questions about Plutus smart contracts or Cardano blockchain." | |
) | |
demo.launch() | |