Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
# Load the model and tokenizer
|
6 |
+
MODEL_NAME = "ubiodee/Cardano_plutus" # Your fine-tuned model
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
9 |
+
|
10 |
+
# Function to generate response from the model
|
11 |
+
def generate_response(prompt):
|
12 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
13 |
+
with torch.no_grad():
|
14 |
+
output = model.generate(**inputs, max_length=512)
|
15 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
16 |
+
return response
|
17 |
+
|
18 |
+
# Gradio Interface
|
19 |
+
iface = gr.Interface(
|
20 |
+
fn=generate_response,
|
21 |
+
inputs=gr.Textbox(label="Enter your prompt"),
|
22 |
+
outputs=gr.Textbox(label="Model Response"),
|
23 |
+
title="Cardano Plutus AI",
|
24 |
+
description="Type in your question or prompt related to Cardano Plutus and get a response from the AI model.",
|
25 |
+
theme="default"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Launch app
|
29 |
+
iface.launch()
|