import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Load model & tokenizer MODEL_NAME = "ubiodee/Cardano_plutus" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) model.eval() if torch.cuda.is_available(): model.to("cuda") # Response function def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=200, temperature=0.7, top_p=0.9, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Remove the prompt from the output to return only the answer if response.startswith(prompt): response = response[len(prompt):].strip() return response # Gradio UI demo = gr.Interface( fn=generate_response, inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus..."), outputs=gr.Textbox(label="Model Response"), title="Cardano Plutus AI Assistant", description="Ask questions about Plutus smart contracts or Cardano blockchain." ) demo.launch()