Spaces:
Running
Running
Upload 4 files
Browse files- README.md +3 -0
- gradio_app.py +21 -0
- main.py +42 -0
- requirements.txt +6 -0
README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Multilingual Realtime Translator
|
2 |
+
|
3 |
+
Translate between English and Nigerian languages using speech and text.
|
gradio_app.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline, MarianMTModel, MarianTokenizer
|
4 |
+
|
5 |
+
asr = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
6 |
+
mt_model_name = "Helsinki-NLP/opus-mt-yo-en"
|
7 |
+
tokenizer = MarianTokenizer.from_pretrained(mt_model_name)
|
8 |
+
model = MarianMTModel.from_pretrained(mt_model_name)
|
9 |
+
|
10 |
+
def translate_speech(audio):
|
11 |
+
transcription = asr(audio)["text"]
|
12 |
+
inputs = tokenizer(transcription, return_tensors="pt", padding=True)
|
13 |
+
translated = model.generate(**inputs)
|
14 |
+
translation = tokenizer.decode(translated[0], skip_special_tokens=True)
|
15 |
+
return transcription, translation
|
16 |
+
|
17 |
+
iface = gr.Interface(fn=translate_speech,
|
18 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
19 |
+
outputs=["text", "text"],
|
20 |
+
title="Yoruba to English Speech Translator")
|
21 |
+
iface.launch()
|
main.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import speech_recognition as sr
|
3 |
+
from transformers import pipeline
|
4 |
+
import edge_tts
|
5 |
+
import asyncio
|
6 |
+
|
7 |
+
# Load Whisper model
|
8 |
+
asr = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
9 |
+
|
10 |
+
# Load translation model (Yoruba → English)
|
11 |
+
from transformers import MarianMTModel, MarianTokenizer
|
12 |
+
mt_model_name = "Helsinki-NLP/opus-mt-yo-en"
|
13 |
+
tokenizer = MarianTokenizer.from_pretrained(mt_model_name)
|
14 |
+
model = MarianMTModel.from_pretrained(mt_model_name)
|
15 |
+
|
16 |
+
# TTS
|
17 |
+
async def speak(text):
|
18 |
+
communicate = edge_tts.Communicate(text, "en-US-GuyNeural")
|
19 |
+
await communicate.save("output.mp3")
|
20 |
+
|
21 |
+
def translate_text(text):
|
22 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True)
|
23 |
+
translated = model.generate(**inputs)
|
24 |
+
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
# Real-time mic input
|
27 |
+
recognizer = sr.Recognizer()
|
28 |
+
with sr.Microphone() as source:
|
29 |
+
print("Speak now...")
|
30 |
+
audio = recognizer.listen(source)
|
31 |
+
print("Processing...")
|
32 |
+
|
33 |
+
# Speech to Text
|
34 |
+
result = asr(audio.get_wav_data())["text"]
|
35 |
+
print("Transcribed:", result)
|
36 |
+
|
37 |
+
# Translate
|
38 |
+
translation = translate_text(result)
|
39 |
+
print("Translated:", translation)
|
40 |
+
|
41 |
+
# Speak
|
42 |
+
asyncio.run(speak(translation))
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
openai-whisper
|
4 |
+
gradio
|
5 |
+
edge-tts
|
6 |
+
speechrecognition
|