Spaces:
Sleeping
Sleeping
mnh
commited on
Commit
·
08a87c6
1
Parent(s):
e226f1a
Add application file
Browse files- app.py +31 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import clip
|
4 |
+
|
5 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
6 |
+
model, preprocess = clip.load("ViT-B/32", device=device)
|
7 |
+
|
8 |
+
|
9 |
+
def predict(image):
|
10 |
+
labels = "Japanese, Chinese, Roman, Greek, Etruscan, Scandinavian, Celtic, Medieval, Victorian, Neoclassic, Romanticism, Art Nouveau, Art deco, Cyberpunk "
|
11 |
+
labels = labels.split(',')
|
12 |
+
|
13 |
+
image = preprocess(image).unsqueeze(0).to(device)
|
14 |
+
text = clip.tokenize([f"a character of origin {c}" for c in labels]).to(device)
|
15 |
+
|
16 |
+
with torch.inference_mode():
|
17 |
+
logits_per_image, logits_per_text = model(image, text)
|
18 |
+
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
|
19 |
+
|
20 |
+
return {k: float(v) for k, v in zip(labels, probs[0])}
|
21 |
+
|
22 |
+
# probs = predict(Image.open("../CLIP/CLIP.png"), "cat, dog, ball")
|
23 |
+
# print(probs)
|
24 |
+
|
25 |
+
|
26 |
+
gr.Interface(fn=predict,
|
27 |
+
inputs=[
|
28 |
+
gr.inputs.Image(label="Image to classify.", type="pil")],
|
29 |
+
theme="grass",
|
30 |
+
outputs="label",
|
31 |
+
description="Zero Shot Image classification..").launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/openai/CLIP
|
2 |
+
torch
|
3 |
+
Jinja2
|