Spaces:
Runtime error
Runtime error
testing if cuda works
Browse files- bayes/models.py +4 -5
- data/mnist/mnist_model.py +1 -1
bayes/models.py
CHANGED
@@ -20,7 +20,6 @@ from sklearn.model_selection import train_test_split
|
|
20 |
import torch
|
21 |
from torchvision import models, transforms
|
22 |
|
23 |
-
from efficientnet.tfkeras import EfficientNetB0
|
24 |
from data.mnist.mnist_model import Net
|
25 |
|
26 |
def get_xtrain(segs):
|
@@ -41,9 +40,9 @@ def get_xtrain(segs):
|
|
41 |
def process_imagenet_get_model(data):
|
42 |
"""Gets wrapped imagenet model."""
|
43 |
# Get the vgg16 model, used in the experiments
|
44 |
-
model =
|
45 |
-
|
46 |
-
|
47 |
|
48 |
xtest = data['X']
|
49 |
ytest = data['y'].astype(int)
|
@@ -73,7 +72,7 @@ def process_imagenet_get_model(data):
|
|
73 |
perturbed_image[segments==i, 1] = background
|
74 |
perturbed_image[segments==i, 2] = background
|
75 |
perturbed_images.append(transf(perturbed_image)[None, :])
|
76 |
-
perturbed_images = torch.from_numpy(np.concatenate(perturbed_images, axis=0)).float()
|
77 |
predictions = []
|
78 |
for q in range(0, perturbed_images.shape[0], batch_size):
|
79 |
predictions.append(softmax(model(perturbed_images[q:q+batch_size])).cpu().detach().numpy())
|
|
|
20 |
import torch
|
21 |
from torchvision import models, transforms
|
22 |
|
|
|
23 |
from data.mnist.mnist_model import Net
|
24 |
|
25 |
def get_xtrain(segs):
|
|
|
40 |
def process_imagenet_get_model(data):
|
41 |
"""Gets wrapped imagenet model."""
|
42 |
# Get the vgg16 model, used in the experiments
|
43 |
+
model = models.vgg16(pretrained=True)
|
44 |
+
model.eval()
|
45 |
+
model.cuda()
|
46 |
|
47 |
xtest = data['X']
|
48 |
ytest = data['y'].astype(int)
|
|
|
72 |
perturbed_image[segments==i, 1] = background
|
73 |
perturbed_image[segments==i, 2] = background
|
74 |
perturbed_images.append(transf(perturbed_image)[None, :])
|
75 |
+
perturbed_images = torch.from_numpy(np.concatenate(perturbed_images, axis=0)).float().cuda()
|
76 |
predictions = []
|
77 |
for q in range(0, perturbed_images.shape[0], batch_size):
|
78 |
predictions.append(softmax(model(perturbed_images[q:q+batch_size])).cpu().detach().numpy())
|
data/mnist/mnist_model.py
CHANGED
@@ -94,7 +94,7 @@ def main():
|
|
94 |
parser.add_argument('--save-model', action='store_true', default=False,
|
95 |
help='For Saving the current Model')
|
96 |
args = parser.parse_args()
|
97 |
-
use_cuda =
|
98 |
|
99 |
torch.manual_seed(args.seed)
|
100 |
|
|
|
94 |
parser.add_argument('--save-model', action='store_true', default=False,
|
95 |
help='For Saving the current Model')
|
96 |
args = parser.parse_args()
|
97 |
+
use_cuda = True # not args.no_cuda and torch.cuda.is_available()
|
98 |
|
99 |
torch.manual_seed(args.seed)
|
100 |
|