Spaces:
Runtime error
Runtime error
upload image functionality testing
Browse files- app.py +5 -4
- bayes/data_routines.py +39 -34
app.py
CHANGED
@@ -21,18 +21,19 @@ from bayes.models import *
|
|
21 |
from image_posterior import create_gif
|
22 |
|
23 |
|
24 |
-
def get_image_data(
|
25 |
"""Gets the image data and model."""
|
26 |
-
image = get_dataset_by_name(
|
|
|
27 |
model_and_data = process_imagenet_get_model(image)
|
28 |
-
|
29 |
return image, model_and_data
|
30 |
|
31 |
|
32 |
def segmentation_generation(image_name, c_width, n_top, n_gif_imgs):
|
33 |
print("Inputs Received:", image_name, c_width, n_top, n_gif_imgs)
|
34 |
|
35 |
-
|
36 |
|
37 |
return "yeehaw"
|
38 |
|
|
|
21 |
from image_posterior import create_gif
|
22 |
|
23 |
|
24 |
+
def get_image_data(inp_image):
|
25 |
"""Gets the image data and model."""
|
26 |
+
image = get_dataset_by_name(inp_image, get_label=False)
|
27 |
+
print("image returned\n", image)
|
28 |
model_and_data = process_imagenet_get_model(image)
|
29 |
+
print("model returned\n", model_and_data)
|
30 |
return image, model_and_data
|
31 |
|
32 |
|
33 |
def segmentation_generation(image_name, c_width, n_top, n_gif_imgs):
|
34 |
print("Inputs Received:", image_name, c_width, n_top, n_gif_imgs)
|
35 |
|
36 |
+
get_image_data(image_name)
|
37 |
|
38 |
return "yeehaw"
|
39 |
|
bayes/data_routines.py
CHANGED
@@ -113,45 +113,49 @@ def get_PIL_transf():
|
|
113 |
])
|
114 |
return transf
|
115 |
|
116 |
-
def load_image(path):
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
"""Loads an image by path."""
|
118 |
-
with open(
|
119 |
-
|
120 |
-
return img.convert('RGB')
|
121 |
|
122 |
-
def get_imagenet(
|
123 |
"""Gets the imagenet data.
|
124 |
|
125 |
Arguments:
|
126 |
name: The name of the imagenet dataset
|
127 |
"""
|
128 |
-
images_paths = []
|
129 |
|
130 |
# Store all the paths of the images
|
131 |
-
data_dir = os.path.join("./data", name)
|
132 |
-
for (dirpath, dirnames, filenames) in os.walk(data_dir):
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
|
137 |
# Load & do transforms for the images
|
138 |
pill_transf = get_PIL_transf()
|
139 |
images, segs = [], []
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
segments = slic(PIL_transformed_image, n_segments=NSEGMENTS, compactness=100, sigma=1)
|
144 |
|
145 |
-
|
146 |
-
|
147 |
|
148 |
images = np.array(images)
|
149 |
|
150 |
-
if get_label:
|
151 |
-
|
152 |
-
|
153 |
-
else:
|
154 |
-
|
155 |
|
156 |
segs = np.array(segs)
|
157 |
|
@@ -203,16 +207,17 @@ def get_mnist(num):
|
|
203 |
|
204 |
return output
|
205 |
|
206 |
-
def get_dataset_by_name(
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
218 |
return d
|
|
|
113 |
])
|
114 |
return transf
|
115 |
|
116 |
+
# def load_image(path):
|
117 |
+
# """Loads an image by path."""
|
118 |
+
# with open(os.path.abspath(path), 'rb') as f:
|
119 |
+
# with Image.open(f) as img:
|
120 |
+
# return img.convert('RGB')
|
121 |
+
|
122 |
+
def load_image(pil_image):
|
123 |
"""Loads an image by path."""
|
124 |
+
with Image.open(pil_image) as img:
|
125 |
+
return img.convert('RGB')
|
|
|
126 |
|
127 |
+
def get_imagenet(pil_image, get_label=True):
|
128 |
"""Gets the imagenet data.
|
129 |
|
130 |
Arguments:
|
131 |
name: The name of the imagenet dataset
|
132 |
"""
|
133 |
+
# images_paths = []
|
134 |
|
135 |
# Store all the paths of the images
|
136 |
+
# data_dir = os.path.join("./data", name)
|
137 |
+
# for (dirpath, dirnames, filenames) in os.walk(data_dir):
|
138 |
+
# for fn in filenames:
|
139 |
+
# if fn != ".DS_Store":
|
140 |
+
# images_paths.append(os.path.join(dirpath, fn))
|
141 |
|
142 |
# Load & do transforms for the images
|
143 |
pill_transf = get_PIL_transf()
|
144 |
images, segs = [], []
|
145 |
+
img = load_image(pil_image)
|
146 |
+
PIL_transformed_image = np.array(pill_transf(img))
|
147 |
+
segments = slic(PIL_transformed_image, n_segments=NSEGMENTS, compactness=100, sigma=1)
|
|
|
148 |
|
149 |
+
images.append(PIL_transformed_image)
|
150 |
+
segs.append(segments)
|
151 |
|
152 |
images = np.array(images)
|
153 |
|
154 |
+
# if get_label:
|
155 |
+
# assert name in IMAGENET_LABELS, "Get label set to True but name not in known imagenet labels"
|
156 |
+
# y = np.ones(images.shape[0]) * IMAGENET_LABELS[name]
|
157 |
+
# else:
|
158 |
+
y = np.ones(images.shape[0]) * -1
|
159 |
|
160 |
segs = np.array(segs)
|
161 |
|
|
|
207 |
|
208 |
return output
|
209 |
|
210 |
+
def get_dataset_by_name(inp_image, get_label=True):
|
211 |
+
d = get_imagenet(inp_image, get_label=get_lable)
|
212 |
+
# if name == "compas":
|
213 |
+
# d = get_and_preprocess_compas_data()
|
214 |
+
# elif name == "german":
|
215 |
+
# d = get_and_preprocess_german()
|
216 |
+
# elif "mnist" in name:
|
217 |
+
# d = get_mnist(int(name[-1]))
|
218 |
+
# elif "imagenet" in name:
|
219 |
+
# d = get_imagenet(name[9:], get_label=get_label)
|
220 |
+
# else:
|
221 |
+
# raise NameError("Unkown dataset %s", name)
|
222 |
+
# d['name'] = name
|
223 |
return d
|