kritsg commited on
Commit
c38a7bb
·
1 Parent(s): 35e4b1c

cleaning up hardcoded aspects of code

Browse files
Files changed (2) hide show
  1. app.py +13 -32
  2. image_posterior.py +11 -16
app.py CHANGED
@@ -16,43 +16,25 @@ from bayes.data_routines import get_dataset_by_name
16
  from bayes.models import *
17
  from image_posterior import create_gif
18
 
19
- parser = argparse.ArgumentParser()
20
- parser.add_argument("--cred_width", type=float, default=0.1)
21
- parser.add_argument("--save_loc", type=str, required=True)
22
- parser.add_argument("--n_top_segs", type=int, default=5)
23
- parser.add_argument("--n_gif_images", type=int, default=20)
24
-
25
- # app = flask.Flask(__name__, template_folder="./")
26
-
27
- IMAGE_NAME = "imagenet_diego"
28
  BLENHEIM_SPANIEL_CLASS = 156
29
 
30
 
31
- def get_image_data():
32
  """Gets the image data and model."""
33
- puppy_image = get_dataset_by_name(IMAGE_NAME, get_label=False)
34
- print("IMAGE RETURNED FROM GETTING DATASET:\n", puppy_image)
35
- model_and_data = process_imagenet_get_model(puppy_image)
36
- print("MODEL RETURNED FROM PROCESSING IMAGE:\n", model_and_data)
37
- return puppy_image, model_and_data
38
 
39
 
40
  def segmentation_generation(image_name, c_width, n_top, n_gif_imgs):
41
  print("GRADIO INPUTS:", image_name, c_width, n_top, n_gif_imgs)
42
 
43
- # html = "<div style=\"background-image: url(./imagenet_diego.png); height: 400px; width: 400px;\"></div>"
44
-
45
- html = (
46
- "<div >"
47
- "<img src='file/diego.gif' alt='picture of dog'/>"
48
- + "</div>"
49
- )
50
- return html
51
-
52
  cred_width = c_width
53
  n_top_segs = n_top
54
  n_gif_images = n_gif_imgs
55
- puppy_image, model_and_data = get_image_data()
56
 
57
  # Unpack datax
58
  xtest = model_and_data["xtest"]
@@ -60,6 +42,7 @@ def segmentation_generation(image_name, c_width, n_top, n_gif_imgs):
60
  segs = model_and_data["xtest_segs"]
61
  get_model = model_and_data["model"]
62
  label = model_and_data["label"]
 
63
 
64
  # Unpack instance and segments
65
  instance = xtest[0]
@@ -88,7 +71,7 @@ def segmentation_generation(image_name, c_width, n_top, n_gif_imgs):
88
  l2=False)
89
 
90
  # Create the gif of the explanation
91
- return create_gif(rout['blr'], segments, instance, n_gif_images, n_top_segs)
92
 
93
  def image_mod(image):
94
  return image.rotate(45)
@@ -96,8 +79,8 @@ def image_mod(image):
96
  if __name__ == "__main__":
97
  # gradio's image inputs look like this: <PIL.Image.Image image mode=RGB size=305x266 at 0x7F3D01C91FA0>
98
  # need to learn how to handle image inputs, or deal with file inputs or just file path strings
99
- inp = gr.inputs.Textbox(lines=1, placeholder="Insert file path here", default="", label="Input Image Path", optional=False)
100
- out = gr.outputs.HTML(label="Output Video")
101
 
102
  iface = gr.Interface(
103
  segmentation_generation,
@@ -108,8 +91,6 @@ if __name__ == "__main__":
108
  gr.inputs.Slider(minimum=10, maximum=50, step=1, default=20, label="n_gif_images", optional=False),
109
  ],
110
  outputs=out,
111
- examples=[["./imagenet_diego.png", 0.05, 7, 50]]
112
  )
113
- iface.launch(enable_queue = True)
114
-
115
- # app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
 
16
  from bayes.models import *
17
  from image_posterior import create_gif
18
 
 
 
 
 
 
 
 
 
 
19
  BLENHEIM_SPANIEL_CLASS = 156
20
 
21
 
22
+ def get_image_data(image_name):
23
  """Gets the image data and model."""
24
+ if (image_name == "imagenet_diego.png"):
25
+ image = get_dataset_by_name("imagenet_diego", get_label=False)
26
+ model_and_data = process_imagenet_get_model(image)
27
+
28
+ return image, model_and_data
29
 
30
 
31
  def segmentation_generation(image_name, c_width, n_top, n_gif_imgs):
32
  print("GRADIO INPUTS:", image_name, c_width, n_top, n_gif_imgs)
33
 
 
 
 
 
 
 
 
 
 
34
  cred_width = c_width
35
  n_top_segs = n_top
36
  n_gif_images = n_gif_imgs
37
+ image, model_and_data = get_image_data(image_name)
38
 
39
  # Unpack datax
40
  xtest = model_and_data["xtest"]
 
42
  segs = model_and_data["xtest_segs"]
43
  get_model = model_and_data["model"]
44
  label = model_and_data["label"]
45
+ print("LABEL:", label)
46
 
47
  # Unpack instance and segments
48
  instance = xtest[0]
 
71
  l2=False)
72
 
73
  # Create the gif of the explanation
74
+ return create_gif(rout['blr'], image_name, segments, instance, n_gif_images, n_top_segs)
75
 
76
  def image_mod(image):
77
  return image.rotate(45)
 
79
  if __name__ == "__main__":
80
  # gradio's image inputs look like this: <PIL.Image.Image image mode=RGB size=305x266 at 0x7F3D01C91FA0>
81
  # need to learn how to handle image inputs, or deal with file inputs or just file path strings
82
+ inp = gr.inputs.Textbox(lines=1, placeholder="Select an example from below", default="", label="Input Image Path", optional=False)
83
+ out = gr.outputs.HTML(label="Output GIF")
84
 
85
  iface = gr.Interface(
86
  segmentation_generation,
 
91
  gr.inputs.Slider(minimum=10, maximum=50, step=1, default=20, label="n_gif_images", optional=False),
92
  ],
93
  outputs=out,
94
+ examples=[["imagenet_diego.png", 0.01, 7, 50]]
95
  )
96
+ iface.launch(show_error=True, enable_queue=True)
 
 
image_posterior.py CHANGED
@@ -41,7 +41,7 @@ def fill_segmentation(values, segmentation, image, n_max=5):
41
  c_image[segmentation == i, c] = np.max(image)
42
  return c_image.astype(int), out.astype(int)
43
 
44
- def create_gif(explanation_blr, segments, image, n_images=20, n_max=5):
45
  """Create the gif corresponding to the image explanation.
46
 
47
  Arguments:
@@ -64,25 +64,20 @@ def create_gif(explanation_blr, segments, image, n_images=20, n_max=5):
64
  plt.imshow(c_image, alpha=0.3)
65
  paths.append(os.path.join(tmpdirname, f"{i}.png"))
66
  plt.savefig(paths[-1])
67
- print("CREATING VIDEO NOW")
68
  # Save to gif
69
  # https://stackoverflow.com/questions/61716066/creating-an-animation-out-of-matplotlib-pngs
70
  # print(f"Saving gif to {save_loc}")
71
 
72
  ims = [imageio.imread(f) for f in paths]
73
- writer = imageio.get_writer('./test.mp4', fps = 10)
74
- for im in ims:
75
- writer.append_data(im)
76
- writer.close()
77
-
 
 
 
 
78
 
79
- html = '''
80
- <div style='max-width:100%; max-height:360px; overflow:auto'>
81
- <video width="320" height="240" autoplay>
82
- <source src="./test.mp4" type=video/mp4>
83
- </video>
84
- </div>
85
- )'''
86
- return html
87
- # return imageio.mimwrite(imageio.RETURN_BYTES, ims)
88
 
 
41
  c_image[segmentation == i, c] = np.max(image)
42
  return c_image.astype(int), out.astype(int)
43
 
44
+ def create_gif(explanation_blr, img_name, segments, image, n_images=20, n_max=5):
45
  """Create the gif corresponding to the image explanation.
46
 
47
  Arguments:
 
64
  plt.imshow(c_image, alpha=0.3)
65
  paths.append(os.path.join(tmpdirname, f"{i}.png"))
66
  plt.savefig(paths[-1])
67
+ print("CREATING GIF NOW")
68
  # Save to gif
69
  # https://stackoverflow.com/questions/61716066/creating-an-animation-out-of-matplotlib-pngs
70
  # print(f"Saving gif to {save_loc}")
71
 
72
  ims = [imageio.imread(f) for f in paths]
73
+ imageio.mimwrite(f'{img_name}_explanation.gif', ims)
74
+
75
+ html = (
76
+ "<div >"
77
+ f"<img src='file/{img_name}_explanation.gif' alt='explanation gif'/>"
78
+ + "</div>"
79
+ )
80
+ return html
81
+
82
 
 
 
 
 
 
 
 
 
 
83