kritsg commited on
Commit
e3914b4
·
1 Parent(s): 0ff7e03

Trying to implement actual model code

Browse files
Files changed (1) hide show
  1. app.py +81 -4
app.py CHANGED
@@ -1,11 +1,88 @@
1
  import numpy as np
2
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  def image_mod(image):
5
  return image.rotate(45)
6
 
7
- inp = gr.inputs.Image(label="Input Image", type="pil")
8
- out = gr.outputs.Image()
9
 
10
- iface = gr.Interface(image_mod, inputs=inp, outputs=out, examples=[["./imagenet_diego.png"]])
11
- iface.launch()
 
 
 
 
 
 
 
 
1
  import numpy as np
2
  import gradio as gr
3
+ """An example of generating a gif explanation for an image of my dog."""
4
+ import argparse
5
+ import os
6
+ from os.path import exists, dirname
7
+ import sys
8
+
9
+ parent_dir = dirname(os.path.abspath(os.getcwd()))
10
+ sys.path.append(parent_dir)
11
+
12
+ from bayes.explanations import BayesLocalExplanations, explain_many
13
+ from bayes.data_routines import get_dataset_by_name
14
+ from bayes.models import *
15
+ from image_posterior import create_gif
16
+
17
+ parser = argparse.ArgumentParser()
18
+ parser.add_argument("--cred_width", type=float, default=0.1)
19
+ parser.add_argument("--save_loc", type=str, required=True)
20
+ parser.add_argument("--n_top_segs", type=int, default=5)
21
+ parser.add_argument("--n_gif_images", type=int, default=20)
22
+
23
+ IMAGE_NAME = "imagenet_diego"
24
+ BLENHEIM_SPANIEL_CLASS = 156
25
+
26
+
27
+ def get_image_data():
28
+ """Gets the image data and model."""
29
+ puppy_image = get_dataset_by_name(IMAGE_NAME, get_label=False)
30
+ model_and_data = process_imagenet_get_model(puppy_image)
31
+ return puppy_image, model_and_data
32
+
33
+
34
+ def segmentation_generation():
35
+ cred_width = 0.1
36
+ n_top_segs = 5
37
+ n_gif_images = 20
38
+ puppy_image, model_and_data = get_image_data()
39
+
40
+ # Unpack datax
41
+ xtest = model_and_data["xtest"]
42
+ ytest = model_and_data["ytest"]
43
+ segs = model_and_data["xtest_segs"]
44
+ get_model = model_and_data["model"]
45
+ label = model_and_data["label"]
46
+
47
+ # Unpack instance and segments
48
+ instance = xtest[0]
49
+ segments = segs[0]
50
+
51
+ # Get wrapped model
52
+ cur_model = get_model(instance, segments)
53
+
54
+ # Get background data
55
+ xtrain = get_xtrain(segments)
56
+
57
+ prediction = np.argmax(cur_model(xtrain[:1]), axis=1)
58
+ assert prediction == BLENHEIM_SPANIEL_CLASS, f"Prediction is {prediction} not {BLENHEIM_SPANIEL_CLASS}"
59
+
60
+ # Compute explanation
61
+ exp_init = BayesLocalExplanations(training_data=xtrain,
62
+ data="image",
63
+ kernel="lime",
64
+ categorical_features=np.arange(xtrain.shape[1]),
65
+ verbose=True)
66
+ rout = exp_init.explain(classifier_f=cur_model,
67
+ data=np.ones_like(xtrain[0]),
68
+ label=BLENHEIM_SPANIEL_CLASS,
69
+ cred_width=cred_width,
70
+ focus_sample=False,
71
+ l2=False)
72
+
73
+ # Create the gif of the explanation
74
+ return create_gif(rout['blr'], segments, instance, n_gif_images, n_top_segs)
75
 
76
  def image_mod(image):
77
  return image.rotate(45)
78
 
 
 
79
 
80
+ if __name__ == "__main__":
81
+ args = parser.parse_args()
82
+ # main(args)
83
+
84
+ inp = gr.inputs.Image(label="Input Image", type="pil")
85
+ out = gr.outputs.Image()
86
+
87
+ iface = gr.Interface(segmentation_generation, inputs=inp, outputs=out, examples=[["./imagenet_diego.png"]])
88
+ iface.launch()