Spaces:
Runtime error
Runtime error
Trying to implement actual model code
Browse files
app.py
CHANGED
@@ -1,11 +1,88 @@
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def image_mod(image):
|
5 |
return image.rotate(45)
|
6 |
|
7 |
-
inp = gr.inputs.Image(label="Input Image", type="pil")
|
8 |
-
out = gr.outputs.Image()
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
3 |
+
"""An example of generating a gif explanation for an image of my dog."""
|
4 |
+
import argparse
|
5 |
+
import os
|
6 |
+
from os.path import exists, dirname
|
7 |
+
import sys
|
8 |
+
|
9 |
+
parent_dir = dirname(os.path.abspath(os.getcwd()))
|
10 |
+
sys.path.append(parent_dir)
|
11 |
+
|
12 |
+
from bayes.explanations import BayesLocalExplanations, explain_many
|
13 |
+
from bayes.data_routines import get_dataset_by_name
|
14 |
+
from bayes.models import *
|
15 |
+
from image_posterior import create_gif
|
16 |
+
|
17 |
+
parser = argparse.ArgumentParser()
|
18 |
+
parser.add_argument("--cred_width", type=float, default=0.1)
|
19 |
+
parser.add_argument("--save_loc", type=str, required=True)
|
20 |
+
parser.add_argument("--n_top_segs", type=int, default=5)
|
21 |
+
parser.add_argument("--n_gif_images", type=int, default=20)
|
22 |
+
|
23 |
+
IMAGE_NAME = "imagenet_diego"
|
24 |
+
BLENHEIM_SPANIEL_CLASS = 156
|
25 |
+
|
26 |
+
|
27 |
+
def get_image_data():
|
28 |
+
"""Gets the image data and model."""
|
29 |
+
puppy_image = get_dataset_by_name(IMAGE_NAME, get_label=False)
|
30 |
+
model_and_data = process_imagenet_get_model(puppy_image)
|
31 |
+
return puppy_image, model_and_data
|
32 |
+
|
33 |
+
|
34 |
+
def segmentation_generation():
|
35 |
+
cred_width = 0.1
|
36 |
+
n_top_segs = 5
|
37 |
+
n_gif_images = 20
|
38 |
+
puppy_image, model_and_data = get_image_data()
|
39 |
+
|
40 |
+
# Unpack datax
|
41 |
+
xtest = model_and_data["xtest"]
|
42 |
+
ytest = model_and_data["ytest"]
|
43 |
+
segs = model_and_data["xtest_segs"]
|
44 |
+
get_model = model_and_data["model"]
|
45 |
+
label = model_and_data["label"]
|
46 |
+
|
47 |
+
# Unpack instance and segments
|
48 |
+
instance = xtest[0]
|
49 |
+
segments = segs[0]
|
50 |
+
|
51 |
+
# Get wrapped model
|
52 |
+
cur_model = get_model(instance, segments)
|
53 |
+
|
54 |
+
# Get background data
|
55 |
+
xtrain = get_xtrain(segments)
|
56 |
+
|
57 |
+
prediction = np.argmax(cur_model(xtrain[:1]), axis=1)
|
58 |
+
assert prediction == BLENHEIM_SPANIEL_CLASS, f"Prediction is {prediction} not {BLENHEIM_SPANIEL_CLASS}"
|
59 |
+
|
60 |
+
# Compute explanation
|
61 |
+
exp_init = BayesLocalExplanations(training_data=xtrain,
|
62 |
+
data="image",
|
63 |
+
kernel="lime",
|
64 |
+
categorical_features=np.arange(xtrain.shape[1]),
|
65 |
+
verbose=True)
|
66 |
+
rout = exp_init.explain(classifier_f=cur_model,
|
67 |
+
data=np.ones_like(xtrain[0]),
|
68 |
+
label=BLENHEIM_SPANIEL_CLASS,
|
69 |
+
cred_width=cred_width,
|
70 |
+
focus_sample=False,
|
71 |
+
l2=False)
|
72 |
+
|
73 |
+
# Create the gif of the explanation
|
74 |
+
return create_gif(rout['blr'], segments, instance, n_gif_images, n_top_segs)
|
75 |
|
76 |
def image_mod(image):
|
77 |
return image.rotate(45)
|
78 |
|
|
|
|
|
79 |
|
80 |
+
if __name__ == "__main__":
|
81 |
+
args = parser.parse_args()
|
82 |
+
# main(args)
|
83 |
+
|
84 |
+
inp = gr.inputs.Image(label="Input Image", type="pil")
|
85 |
+
out = gr.outputs.Image()
|
86 |
+
|
87 |
+
iface = gr.Interface(segmentation_generation, inputs=inp, outputs=out, examples=[["./imagenet_diego.png"]])
|
88 |
+
iface.launch()
|