kritsg commited on
Commit
e572b7a
·
1 Parent(s): 6c361ca

testing embedding html vids

Browse files
Files changed (3) hide show
  1. app.py +9 -0
  2. bayes/data_routines.py +3 -3
  3. image_posterior.py +1 -1
app.py CHANGED
@@ -39,6 +39,15 @@ def get_image_data():
39
 
40
  def segmentation_generation(image_name, c_width, n_top, n_gif_imgs):
41
  print("GRADIO INPUTS:", image_name, c_width, n_top, n_gif_imgs)
 
 
 
 
 
 
 
 
 
42
  cred_width = c_width
43
  n_top_segs = n_top
44
  n_gif_images = n_gif_imgs
 
39
 
40
  def segmentation_generation(image_name, c_width, n_top, n_gif_imgs):
41
  print("GRADIO INPUTS:", image_name, c_width, n_top, n_gif_imgs)
42
+
43
+ html = '''
44
+ <div style='max-width:100%; max-height:360px; overflow:auto'>
45
+ <video width="320" height="240" autoplay>
46
+ <source src="./test.mp4" type=video/mp4>
47
+ </video>
48
+ </div>'''
49
+ return html
50
+
51
  cred_width = c_width
52
  n_top_segs = n_top
53
  n_gif_images = n_gif_imgs
bayes/data_routines.py CHANGED
@@ -38,7 +38,7 @@ def get_and_preprocess_compas_data():
38
  POSITIVE_OUTCOME = PARAMS['positive_outcome']
39
  NEGATIVE_OUTCOME = PARAMS['negative_outcome']
40
 
41
- compas_df = pd.read_csv("../data/compas-scores-two-years.csv", index_col=0)
42
  compas_df = compas_df.loc[(compas_df['days_b_screening_arrest'] <= 30) &
43
  (compas_df['days_b_screening_arrest'] >= -30) &
44
  (compas_df['is_recid'] != -1) &
@@ -87,7 +87,7 @@ def get_and_preprocess_german():
87
  POSITIVE_OUTCOME = PARAMS['positive_outcome']
88
  NEGATIVE_OUTCOME = PARAMS['negative_outcome']
89
 
90
- X = pd.read_csv("../data/german_processed.csv")
91
  y = X["GoodCustomer"]
92
 
93
  X = X.drop(["GoodCustomer", "PurposeOfLoan"], axis=1)
@@ -172,7 +172,7 @@ def get_mnist(num):
172
  """
173
 
174
  # Get the mnist data
175
- test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data/mnist',
176
  train=False,
177
  download=True,
178
  transform=transforms.Compose([transforms.ToTensor(),
 
38
  POSITIVE_OUTCOME = PARAMS['positive_outcome']
39
  NEGATIVE_OUTCOME = PARAMS['negative_outcome']
40
 
41
+ compas_df = pd.read_csv("./data/compas-scores-two-years.csv", index_col=0)
42
  compas_df = compas_df.loc[(compas_df['days_b_screening_arrest'] <= 30) &
43
  (compas_df['days_b_screening_arrest'] >= -30) &
44
  (compas_df['is_recid'] != -1) &
 
87
  POSITIVE_OUTCOME = PARAMS['positive_outcome']
88
  NEGATIVE_OUTCOME = PARAMS['negative_outcome']
89
 
90
+ X = pd.read_csv("./data/german_processed.csv")
91
  y = X["GoodCustomer"]
92
 
93
  X = X.drop(["GoodCustomer", "PurposeOfLoan"], axis=1)
 
172
  """
173
 
174
  # Get the mnist data
175
+ test_loader = torch.utils.data.DataLoader(datasets.MNIST('./data/mnist',
176
  train=False,
177
  download=True,
178
  transform=transforms.Compose([transforms.ToTensor(),
image_posterior.py CHANGED
@@ -64,7 +64,7 @@ def create_gif(explanation_blr, segments, image, n_images=20, n_max=5):
64
  plt.imshow(c_image, alpha=0.3)
65
  paths.append(os.path.join(tmpdirname, f"{i}.png"))
66
  plt.savefig(paths[-1])
67
-
68
  # Save to gif
69
  # https://stackoverflow.com/questions/61716066/creating-an-animation-out-of-matplotlib-pngs
70
  # print(f"Saving gif to {save_loc}")
 
64
  plt.imshow(c_image, alpha=0.3)
65
  paths.append(os.path.join(tmpdirname, f"{i}.png"))
66
  plt.savefig(paths[-1])
67
+ print("CREATING VIDEO NOW")
68
  # Save to gif
69
  # https://stackoverflow.com/questions/61716066/creating-an-animation-out-of-matplotlib-pngs
70
  # print(f"Saving gif to {save_loc}")