import numpy as np import gradio as gr """An example of generating a gif explanation for an image of my dog.""" import argparse import os from os.path import exists, dirname import sys import flask parent_dir = dirname(os.path.abspath(os.getcwd())) sys.path.append(parent_dir) from bayes.explanations import BayesLocalExplanations, explain_many from bayes.data_routines import get_dataset_by_name from bayes.models import * from image_posterior import create_gif parser = argparse.ArgumentParser() parser.add_argument("--cred_width", type=float, default=0.1) parser.add_argument("--save_loc", type=str, required=True) parser.add_argument("--n_top_segs", type=int, default=5) parser.add_argument("--n_gif_images", type=int, default=20) # app = flask.Flask(__name__, template_folder="./") IMAGE_NAME = "imagenet_diego" BLENHEIM_SPANIEL_CLASS = 156 def get_image_data(): """Gets the image data and model.""" puppy_image = get_dataset_by_name(IMAGE_NAME, get_label=False) model_and_data = process_imagenet_get_model(puppy_image) return puppy_image, model_and_data def segmentation_generation(image_name, c_width, n_top, n_gif_imgs): cred_width = c_width n_top_segs = n_top n_gif_images = n_gif_imgs puppy_image, model_and_data = get_image_data() # Unpack datax xtest = model_and_data["xtest"] ytest = model_and_data["ytest"] segs = model_and_data["xtest_segs"] get_model = model_and_data["model"] label = model_and_data["label"] # Unpack instance and segments instance = xtest[0] segments = segs[0] # Get wrapped model cur_model = get_model(instance, segments) # Get background data xtrain = get_xtrain(segments) prediction = np.argmax(cur_model(xtrain[:1]), axis=1) assert prediction == BLENHEIM_SPANIEL_CLASS, f"Prediction is {prediction} not {BLENHEIM_SPANIEL_CLASS}" # Compute explanation exp_init = BayesLocalExplanations(training_data=xtrain, data="image", kernel="lime", categorical_features=np.arange(xtrain.shape[1]), verbose=True) rout = exp_init.explain(classifier_f=cur_model, data=np.ones_like(xtrain[0]), label=BLENHEIM_SPANIEL_CLASS, cred_width=cred_width, focus_sample=False, l2=False) # Create the gif of the explanation return create_gif(rout['blr'], segments, instance, n_gif_images, n_top_segs) def image_mod(image): return image.rotate(45) if __name__ == "__main__": inp = gr.inputs.Image(label="Input Image", type="pil") out = gr.outputs.HTML(label="Output Video") iface = gr.Interface( segmentation_generation, [ inp, gr.inputs.Slider(minimum=0.01, maximum=0.8, step=0.001, default=0.1, label="cred_width", optional=False), gr.inputs.Slider(minimum=1, maximum=10, step=1, default=5, label="n_top_segs", optional=False), gr.inputs.Slider(minimum=10, maximum=50, step=1, default=20, label="n_gif_images", optional=False), ], outputs=out, examples=[["./imagenet_diego.png", 0.05, 7, 50]] ) iface.launch() # app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))