Spaces:
Runtime error
Runtime error
File size: 10,171 Bytes
e61d9ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os
import json
import csv
import datetime
from email.utils import parseaddr
import gradio as gr
import pandas as pd
import numpy as np
from datasets import load_dataset
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from scorer import instruction_scorer
from content import format_error, format_warning, format_log, TITLE, INTRODUCTION_TEXT, SUBMISSION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, model_hyperlink
TOKEN = os.environ.get("TOKEN", None)
OWNER="ucla-contextual"
TEST_DATASET = f"{OWNER}/contextual_test"
VAL_DATASET = f"{OWNER}/contextual_val"
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
CONTACT_DATASET = f"{OWNER}/contact_info"
RESULTS_DATASET = f"{OWNER}/results"
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
api = HfApi()
YEAR_VERSION = "2024"
def read_json_file(filepath):
with open(filepath) as infile:
data_dict = json.load(infile)
return data_dict
def save_json_file(filepath, data_dict):
with open(filepath, "w") as outfile:
json.dump(data_dict, outfile)
os.makedirs("scored", exist_ok=True)
test_data_files = {"test": "contextual_test.csv"}
test_dataset = load_dataset(TEST_DATASET, data_files=test_data_files , token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
val_data_files = {"val": "contextual_val.csv"}
val_dataset = load_dataset(VAL_DATASET, data_files=val_data_files , token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
results_data_files = {"test": "contextual_test_results.csv", "val": "contextual_val_results.csv"}
results = load_dataset(RESULTS_DATASET, data_files=
results_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
contacts_data_files = {"contacts": "contacts.csv"}
contact_infos = load_dataset(CONTACT_DATASET, data_files=contacts_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
def get_dataframe_from_results(results, split):
df = results[split].to_pandas()
df.drop(columns=['URL'], inplace=True)
df = df.sort_values(by=["All"], ascending=False)
return df
test_dataset_dataframe = test_dataset["test"].to_pandas()
val_dataset_dataframe = val_dataset["val"].to_pandas()
contacts_dataframe = contact_infos["contacts"].to_pandas()
val_results_dataframe = get_dataframe_from_results(results=results, split="val")
test_results_dataframe = get_dataframe_from_results(results=results, split="test")
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
TYPES = ["markdown", "markdown", "markdown", "number", "number", "number","number", "number", "number", "number", "number", "number"]
def add_new_eval(
model: str,
method: str,
url: str,
path_to_file: str,
organisation: str,
mail: str,
):
print("printing all inputs:", model, method, url, path_to_file, organisation, mail)
if len(model)==0:
print("model none")
raise gr.Error("Please provide a model name. Field empty!")
if len(method)==0:
print("method none")
raise gr.Error("Please provide a method. Field empty!")
if len(organisation)==0:
print("org none")
raise gr.Error("Please provide organisation information. Field empty!")
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
print("email here")
raise gr.Error("Please provide a valid email address.")
# Check if the combination model/org already exists and prints a warning message if yes
if model.lower() in set([m.lower() for m in results["val"]["Model"]]) and organisation.lower() in set([o.lower() for o in results["val"]["Organisation"]]):
print("model org combo here")
raise gr.Error("This model has been already submitted.")
if path_to_file is None:
print("file missing here")
raise gr.Error("Please attach a file.")
tmp_file_output = read_json_file(path_to_file.name)
if len(tmp_file_output.keys())!=1:
print("file format wrong here")
raise gr.Error("Submission file format incorrect. Please refer to the format description!")
tmp_output_key = list(tmp_file_output.keys())[0]
if len(tmp_file_output[tmp_output_key].keys())!=100:
print("file not 100 here")
raise gr.Error("File must contain exactly 100 predictions.")
# Save submitted file
time_atm = datetime.datetime.today()
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_raw_{time_atm}.json",
repo_type="dataset",
token=TOKEN
)
# Compute score
file_path = path_to_file.name
scores = instruction_scorer(val_dataset_dataframe, file_path , model)
path_or_fileobj=f"scored/{organisation}_{model}.json"
save_json_file(path_or_fileobj, scores)
# Save scored file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_or_fileobj,
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_scored_{time_atm}.json",
repo_type="dataset",
token=TOKEN
)
# Actual submission
eval_entry = {
"Model": model,
"Method":method,
"Organisation": organisation,
"URL": url,
"All":scores["average"],
"Time":scores["time"],
"Shopping":scores["shopping"],
"Navigation":scores["navigation-transportation"],
"Abstract":scores["abstract"],
"Application Usage":scores["app"],
"Web Usage":scores["web"],
"Infographic":scores["infographics"],
"Miscellaneous Natural Scenes": scores["misc"]
}
val_results_dataframe = get_dataframe_from_results(results=results, split="val")
val_results_dataframe = pd.concat([val_results_dataframe, pd.DataFrame([eval_entry])], ignore_index=True)
val_results_dataframe.to_csv('contextual_val_results.csv', index=False)
api.upload_file(
repo_id=RESULTS_DATASET,
path_or_fileobj="contextual_val_results.csv",
path_in_repo=f"contextual_val_results.csv",
repo_type="dataset",
token=TOKEN
)
contact_info = {
"Model": model,
"URL": url,
"Organisation": organisation,
"Mail": mail,
}
contacts_dataframe = contact_infos["contacts"].to_pandas()
contacts_dataframe = pd.concat([contacts_dataframe, pd.DataFrame([contact_info])], ignore_index=True)
contacts_dataframe.to_csv('contacts.csv', index=False)
api.upload_file(
repo_id=CONTACT_DATASET,
path_or_fileobj="contacts.csv",
path_in_repo=f"contacts.csv",
repo_type="dataset",
token=TOKEN
)
return format_log(f"Model {model} submitted by {organisation} successfully! \nPlease refresh the val leaderboard, and wait a bit to see the score displayed")
def refresh():
results_data_files = {"test": "contextual_test_results.csv", "val": "contextual_val_results.csv"}
results = load_dataset(RESULTS_DATASET, data_files=
results_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
val_results_dataframe = get_dataframe_from_results(results=results, split="val")
test_results_dataframe = get_dataframe_from_results(results=results, split="test")
return val_results_dataframe, test_results_dataframe
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π§ Introduction", open=False):
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π― Submission Guidelines", open=False):
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.TextArea(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
)
with gr.Tab("Results: Test"):
leaderboard_table_test = gr.components.Dataframe(
value=test_results_dataframe, datatype=TYPES, interactive=False,
column_widths=["20%"]
)
with gr.Tab("Results: Val"):
leaderboard_table_val = gr.components.Dataframe(
value=val_results_dataframe, datatype=TYPES, interactive=False,
column_widths=["20%"]
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table_val,
leaderboard_table_test,
],
)
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name", type='text')
method_textbox = gr.Textbox(label="Method (LMM or Aug LLM or any other)", type='text')
url_textbox = gr.Textbox(label="URL to model information", type='text')
with gr.Column():
organisation = gr.Textbox(label="Organisation", type='text')
mail = gr.Textbox(label="Contact email (will be stored privately, & used if there is an issue with your submission)", type='email')
file_output = gr.File()
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
method_textbox,
url_textbox,
file_output,
organisation,
mail
],
submission_result,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True)
|