fix: revert back to old version
Browse files- gradio_app.py +233 -207
- notebook_lm_kokoro.py +5 -87
gradio_app.py
CHANGED
@@ -1,255 +1,281 @@
|
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import numpy as np
|
6 |
import soundfile as sf
|
|
|
|
|
|
|
7 |
import warnings
|
8 |
-
import
|
9 |
-
import concurrent.futures
|
10 |
-
import urllib.request
|
11 |
-
import pathlib
|
12 |
-
|
13 |
-
try:
|
14 |
-
from moshi.models.tts import TTSModel
|
15 |
-
except ImportError:
|
16 |
-
print("Moshi TTSModel not available — install Kyutai’s version via pip.")
|
17 |
-
TTSModel = None
|
18 |
-
|
19 |
-
from notebook_lm_kokoro import (
|
20 |
-
generate_podcast_script,
|
21 |
-
generate_audio_from_script,
|
22 |
-
generate_audio_kyutai,
|
23 |
-
KPipeline,
|
24 |
-
)
|
25 |
-
|
26 |
-
import sys
|
27 |
-
|
28 |
-
# Diagnostic: where is ~/.cache pointing?
|
29 |
-
print(f"[DEBUG] HOME = {os.environ.get('HOME')}")
|
30 |
-
print(f"[DEBUG] XDG_CACHE_HOME = {os.environ.get('XDG_CACHE_HOME')}")
|
31 |
-
print(f"[DEBUG] Trying to create /.cache/test.txt")
|
32 |
-
|
33 |
-
try:
|
34 |
-
os.makedirs("/.cache", exist_ok=True)
|
35 |
-
with open("/.cache/test.txt", "w") as f:
|
36 |
-
f.write("test")
|
37 |
-
print("[DEBUG] Successfully wrote to /.cache")
|
38 |
-
except Exception as e:
|
39 |
-
print(f"[DEBUG] ❌ Failed to write to /.cache: {e}")
|
40 |
-
|
41 |
-
# Set cache dirs BEFORE importing torch, transformers, or moshi
|
42 |
-
os.environ["HF_HOME"] = "/tmp/huggingface"
|
43 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface/transformers"
|
44 |
-
os.environ["XDG_CACHE_HOME"] = "/tmp/huggingface"
|
45 |
-
os.environ["TORCH_HOME"] = "/tmp/torch"
|
46 |
-
os.environ["MOSHI_CACHE_DIR"] = "/tmp/moshi"
|
47 |
-
|
48 |
-
# Explicitly override ~/.cache
|
49 |
-
os.environ["HOME"] = "/tmp/home"
|
50 |
-
os.makedirs("/tmp/home", exist_ok=True)
|
51 |
-
|
52 |
-
for path in [
|
53 |
-
"/tmp/.cache",
|
54 |
-
"/tmp/huggingface",
|
55 |
-
"/tmp/huggingface/transformers",
|
56 |
-
"/tmp/torch",
|
57 |
-
"/tmp/moshi",
|
58 |
-
]:
|
59 |
-
os.makedirs(path, exist_ok=True)
|
60 |
-
|
61 |
-
if not os.path.exists("/.cache"):
|
62 |
-
try:
|
63 |
-
os.symlink("/tmp/.cache", "/.cache")
|
64 |
-
print("[DEBUG] Symlinked /.cache to /tmp/.cache")
|
65 |
-
except Exception as e:
|
66 |
-
print(f"[DEBUG] Couldn't symlink /.cache: {e}")
|
67 |
-
|
68 |
import gradio as gr
|
69 |
-
|
|
|
|
|
70 |
warnings.filterwarnings("ignore")
|
71 |
-
NUM_WORKERS = multiprocessing.cpu_count()
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
Ensures the frpc binary is present in the location Gradio expects.
|
76 |
-
Avoids /.cache symlinks (which are not writable in HF Spaces).
|
77 |
-
"""
|
78 |
-
gradio_temp_dir = os.environ.get("GRADIO_TEMP_DIR", "/tmp/gradio")
|
79 |
-
target_dir = os.path.join(gradio_temp_dir, "frpc")
|
80 |
-
os.makedirs(target_dir, exist_ok=True)
|
81 |
-
|
82 |
-
frpc_file = os.path.join(target_dir, "frpc_linux_amd64_v0.3")
|
83 |
-
|
84 |
-
if not os.path.exists(frpc_file):
|
85 |
-
print(f"[INFO] Downloading frpc binary to: {frpc_file}")
|
86 |
-
try:
|
87 |
-
url = "https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_linux_amd64"
|
88 |
-
urllib.request.urlretrieve(url, frpc_file)
|
89 |
-
os.chmod(frpc_file, 0o755) # Make it executable
|
90 |
-
print("[SUCCESS] frpc binary downloaded and made executable.")
|
91 |
-
except Exception as e:
|
92 |
-
print(f"[ERROR] Failed to download frpc binary: {e}")
|
93 |
-
else:
|
94 |
-
print("[INFO] frpc binary already exists at expected path.")
|
95 |
|
96 |
def process_segment(entry_and_voice_map):
|
97 |
-
entry, voice_map = entry_and_voice_map
|
98 |
speaker, dialogue = entry
|
99 |
chosen_voice = voice_map.get(speaker, "af_heart")
|
|
|
|
|
100 |
pipeline = KPipeline(lang_code="a", repo_id="hexgrad/Kokoro-82M")
|
101 |
generator = pipeline(dialogue, voice=chosen_voice)
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
def generate_audio_from_script_with_voices(script, speaker1_voice, speaker2_voice, output_file):
|
105 |
-
print("[DEBUG] Raw transcript string:")
|
106 |
-
print(script)
|
107 |
-
|
108 |
voice_map = {"Speaker 1": speaker1_voice, "Speaker 2": speaker2_voice}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
try:
|
110 |
transcript_list = ast.literal_eval(script)
|
111 |
if not isinstance(transcript_list, list):
|
112 |
raise ValueError("Transcript is not a list")
|
113 |
|
114 |
-
|
115 |
-
for entry
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
return None
|
|
|
|
|
121 |
sample_rate = 24000
|
122 |
pause = np.zeros(sample_rate, dtype=np.float32)
|
123 |
-
final_audio =
|
124 |
-
for seg in
|
125 |
final_audio = np.concatenate((final_audio, pause, seg), axis=0)
|
|
|
126 |
sf.write(output_file, final_audio, sample_rate)
|
|
|
127 |
return output_file
|
|
|
128 |
except Exception as e:
|
129 |
-
print(f"
|
130 |
return None
|
131 |
|
132 |
-
def process_pdf(pdf_file, speaker1_voice, speaker2_voice, kyutai_voice1, kyutai_voice2,
|
133 |
-
provider, openai_key=None, openrouter_key=None, openrouter_base=None, tts_engine=None):
|
134 |
-
try:
|
135 |
-
if provider == "openai" and not openai_key:
|
136 |
-
return "OpenAI API key is required", None
|
137 |
-
if provider == "openrouter" and not openrouter_key:
|
138 |
-
return "OpenRouter API key is required", None
|
139 |
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
142 |
os.environ["OPENROUTER_API_BASE"] = "https://api.openai.com/v1"
|
143 |
-
|
144 |
-
os.environ["OPENAI_API_KEY"] =
|
145 |
os.environ["OPENROUTER_API_BASE"] = openrouter_base or "https://openrouter.ai/api/v1"
|
146 |
-
|
147 |
if pdf_file is None:
|
148 |
return "No file uploaded", None
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
155 |
if transcript is None:
|
156 |
-
return "
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
return ("Process complete!", result) if result else ("Error generating audio", None)
|
168 |
except Exception as e:
|
169 |
-
print(f"process_pdf
|
170 |
-
return f"Error: {e}", None
|
171 |
-
|
172 |
-
def update_ui(provider, tts_engine):
|
173 |
-
return [
|
174 |
-
gr.update(visible=tts_engine == "kokoro"),
|
175 |
-
gr.update(visible=tts_engine == "kokoro"),
|
176 |
-
gr.update(visible=tts_engine == "kyutai"),
|
177 |
-
gr.update(visible=tts_engine == "kyutai"),
|
178 |
-
gr.update(visible=provider in ["openai", "kyutai"]),
|
179 |
-
gr.update(visible=provider in ["openrouter", "kyutai"]),
|
180 |
-
gr.update(visible=provider == "openrouter"),
|
181 |
-
]
|
182 |
|
183 |
def create_gradio_app():
|
184 |
-
|
|
|
|
|
|
|
|
|
185 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as app:
|
186 |
-
gr.Markdown(
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
188 |
with gr.Row():
|
189 |
-
with gr.Column(scale=
|
190 |
-
pdf_input = gr.File(
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
speaker1_voice = gr.Dropdown(["af_heart","af_bella","hf_beta"], value="af_heart", label="Speaker 1 Voice", visible=True)
|
195 |
-
speaker2_voice = gr.Dropdown(["af_nicole","af_heart","bf_emma"], value="bf_emma", label="Speaker 2 Voice", visible=True)
|
196 |
-
kyutai_voice1 = gr.Dropdown(
|
197 |
-
[
|
198 |
-
"expresso/ex03-ex01_happy_001_channel1_334s.wav",
|
199 |
-
"expresso/ex03-ex02_narration_001_channel1_674s.wav",
|
200 |
-
"vctk/p226_023_mic1.wav"
|
201 |
-
],
|
202 |
-
value="expresso/ex03-ex01_happy_001_channel1_334s.wav",
|
203 |
-
label="Kyutai Voice 1",
|
204 |
-
visible=True
|
205 |
)
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
"
|
210 |
-
"
|
211 |
-
"
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
)
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
return app
|
251 |
|
252 |
-
|
253 |
-
ensure_gradio_frpc()
|
254 |
if __name__ == "__main__":
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# filepath: /Users/udaylunawat/Downloads/Data-Science-Projects/NotebookLM_clone/gradio_app.py
|
2 |
import os
|
3 |
import tempfile
|
4 |
+
import gradio as gr
|
5 |
+
from notebook_lm_kokoro import generate_podcast_script, KPipeline
|
|
|
6 |
import soundfile as sf
|
7 |
+
import numpy as np
|
8 |
+
import ast
|
9 |
+
import shutil
|
10 |
import warnings
|
11 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
import gradio as gr
|
13 |
+
import concurrent.futures
|
14 |
+
import multiprocessing
|
15 |
+
from notebook_lm_kokoro import generate_podcast_script, generate_audio_from_script
|
16 |
warnings.filterwarnings("ignore")
|
|
|
17 |
|
18 |
+
# Define number of workers based on CPU cores
|
19 |
+
NUM_WORKERS = multiprocessing.cpu_count() # Gets total CPU cores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def process_segment(entry_and_voice_map):
|
22 |
+
entry, voice_map = entry_and_voice_map # Unpack the tuple
|
23 |
speaker, dialogue = entry
|
24 |
chosen_voice = voice_map.get(speaker, "af_heart")
|
25 |
+
print(f"Generating audio for {speaker} with voice '{chosen_voice}'...")
|
26 |
+
|
27 |
pipeline = KPipeline(lang_code="a", repo_id="hexgrad/Kokoro-82M")
|
28 |
generator = pipeline(dialogue, voice=chosen_voice)
|
29 |
+
|
30 |
+
segment_audio = []
|
31 |
+
for _, _, audio in generator:
|
32 |
+
segment_audio.append(audio)
|
33 |
+
|
34 |
+
if segment_audio:
|
35 |
+
return np.concatenate(segment_audio, axis=0)
|
36 |
+
return None
|
37 |
|
38 |
def generate_audio_from_script_with_voices(script, speaker1_voice, speaker2_voice, output_file):
|
|
|
|
|
|
|
39 |
voice_map = {"Speaker 1": speaker1_voice, "Speaker 2": speaker2_voice}
|
40 |
+
|
41 |
+
# Clean up the script string if needed
|
42 |
+
script = script.strip()
|
43 |
+
if not script.startswith("[") or not script.endswith("]"):
|
44 |
+
print("Invalid transcript format. Expected a list of tuples.")
|
45 |
+
return None
|
46 |
+
|
47 |
try:
|
48 |
transcript_list = ast.literal_eval(script)
|
49 |
if not isinstance(transcript_list, list):
|
50 |
raise ValueError("Transcript is not a list")
|
51 |
|
52 |
+
all_audio_segments = []
|
53 |
+
# Prepare input data with voice_map for each entry
|
54 |
+
entries_with_voice_map = [(entry, voice_map) for entry in transcript_list]
|
55 |
+
|
56 |
+
try:
|
57 |
+
# Process segments in parallel
|
58 |
+
with concurrent.futures.ProcessPoolExecutor(max_workers=NUM_WORKERS) as executor:
|
59 |
+
# Map the processing function across all dialogue entries
|
60 |
+
results = list(executor.map(process_segment, entries_with_voice_map))
|
61 |
+
|
62 |
+
# Filter out None results and combine audio segments
|
63 |
+
all_audio_segments = [r for r in results if r is not None]
|
64 |
+
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error during audio generation: {e}")
|
67 |
+
return None
|
68 |
+
|
69 |
+
if not all_audio_segments:
|
70 |
+
print("No audio segments were generated")
|
71 |
return None
|
72 |
+
|
73 |
+
# Add a pause between segments
|
74 |
sample_rate = 24000
|
75 |
pause = np.zeros(sample_rate, dtype=np.float32)
|
76 |
+
final_audio = all_audio_segments[0]
|
77 |
+
for seg in all_audio_segments[1:]:
|
78 |
final_audio = np.concatenate((final_audio, pause, seg), axis=0)
|
79 |
+
|
80 |
sf.write(output_file, final_audio, sample_rate)
|
81 |
+
print(f"Saved final audio as {output_file}")
|
82 |
return output_file
|
83 |
+
|
84 |
except Exception as e:
|
85 |
+
print(f"Error processing transcript: {e}")
|
86 |
return None
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
def process_pdf(pdf_file, speaker1_voice, speaker2_voice, provider, api_key, openrouter_base=None):
|
90 |
+
"""Process the uploaded PDF file and generate audio"""
|
91 |
+
try:
|
92 |
+
|
93 |
+
# Set API configuration based on provider
|
94 |
+
if provider == "openai":
|
95 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
96 |
os.environ["OPENROUTER_API_BASE"] = "https://api.openai.com/v1"
|
97 |
+
else:
|
98 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
99 |
os.environ["OPENROUTER_API_BASE"] = openrouter_base or "https://openrouter.ai/api/v1"
|
100 |
+
# Check if we received a valid file
|
101 |
if pdf_file is None:
|
102 |
return "No file uploaded", None
|
103 |
+
|
104 |
+
# Create a temporary file with .pdf extension
|
105 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
106 |
+
# For Gradio uploads, we need to copy the file
|
107 |
+
shutil.copy2(pdf_file.name, tmp.name)
|
108 |
+
tmp_path = tmp.name
|
109 |
+
|
110 |
+
print(f"Uploaded PDF saved at {tmp_path}")
|
111 |
+
|
112 |
+
# Generate transcript using your existing function
|
113 |
+
transcript, transcript_path = generate_podcast_script(tmp_path, provider=provider)
|
114 |
if transcript is None:
|
115 |
+
return "Error generating transcript", None
|
116 |
+
|
117 |
+
# Define an output file path for the generated audio
|
118 |
+
audio_output_path = os.path.join(
|
119 |
+
os.path.dirname(tmp_path),
|
120 |
+
f"audio_{os.path.basename(tmp_path).replace('.pdf', '.wav')}"
|
121 |
+
)
|
122 |
+
|
123 |
+
# result = generate_audio_from_script_with_voices(
|
124 |
+
# transcript,
|
125 |
+
# speaker1_voice,
|
126 |
+
# speaker2_voice,
|
127 |
+
# output_file=audio_output_path
|
128 |
+
# )
|
129 |
+
|
130 |
+
# Use ProcessPoolExecutor with explicit number of workers
|
131 |
+
with concurrent.futures.ProcessPoolExecutor(max_workers=NUM_WORKERS) as executor:
|
132 |
+
print(f"Processing with {NUM_WORKERS} CPU cores")
|
133 |
+
# Submit audio generation task to the executor
|
134 |
+
future = executor.submit(
|
135 |
+
generate_audio_from_script_with_voices,
|
136 |
+
transcript, speaker1_voice, speaker2_voice, audio_output_path
|
137 |
+
)
|
138 |
+
result = future.result()
|
139 |
+
|
140 |
+
if result is None:
|
141 |
+
return "Error generating audio", None
|
142 |
+
|
143 |
+
return "Process complete!", result
|
144 |
|
145 |
+
except Exception as e:
|
146 |
+
print(f"Error in process_pdf: {str(e)}")
|
147 |
+
return f"Error processing file: {str(e)}", None
|
148 |
+
|
149 |
+
if result is None:
|
150 |
+
return "Error generating audio", None
|
151 |
+
|
152 |
+
return "Process complete!", result
|
153 |
|
|
|
154 |
except Exception as e:
|
155 |
+
print(f"Error in process_pdf: {str(e)}")
|
156 |
+
return f"Error processing file: {str(e)}", None
|
157 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
def create_gradio_app():
|
160 |
+
# Add CSS for better styling
|
161 |
+
css = """
|
162 |
+
.gradio-container {max-width: 900px !important}
|
163 |
+
"""
|
164 |
+
|
165 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as app:
|
166 |
+
gr.Markdown(
|
167 |
+
"""
|
168 |
+
# 📚 NotebookLM-Kokoro TTS App
|
169 |
+
Upload a PDF, choose voices, and generate conversational audio using Kokoro TTS.
|
170 |
+
"""
|
171 |
+
)
|
172 |
+
|
173 |
with gr.Row():
|
174 |
+
with gr.Column(scale=2):
|
175 |
+
pdf_input = gr.File(
|
176 |
+
label="Upload PDF Document",
|
177 |
+
file_types=[".pdf"],
|
178 |
+
type="filepath"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
)
|
180 |
+
|
181 |
+
with gr.Row():
|
182 |
+
speaker1_voice = gr.Dropdown(
|
183 |
+
choices=["af_heart", "af_bella", "hf_beta"],
|
184 |
+
value="af_heart",
|
185 |
+
label="Speaker 1 Voice"
|
186 |
+
)
|
187 |
+
speaker2_voice = gr.Dropdown(
|
188 |
+
choices=["af_nicole", "af_heart", "bf_emma"],
|
189 |
+
value="bf_emma",
|
190 |
+
label="Speaker 2 Voice"
|
191 |
+
)
|
192 |
+
|
193 |
+
|
194 |
+
with gr.Group():
|
195 |
+
provider = gr.Radio(
|
196 |
+
choices=["openai", "openrouter"],
|
197 |
+
value="openrouter",
|
198 |
+
label="API Provider"
|
199 |
+
)
|
200 |
+
|
201 |
+
api_key = gr.Textbox(
|
202 |
+
label="API Key",
|
203 |
+
placeholder="Enter your API key here...",
|
204 |
+
type="password",
|
205 |
+
elem_classes="api-input"
|
206 |
+
)
|
207 |
+
|
208 |
+
openrouter_base = gr.Textbox(
|
209 |
+
label="OpenRouter Base URL (optional)",
|
210 |
+
placeholder="https://openrouter.ai/api/v1",
|
211 |
+
visible=False,
|
212 |
+
elem_classes="api-input"
|
213 |
+
)
|
214 |
+
|
215 |
+
# Show/hide OpenRouter base URL based on provider selection
|
216 |
+
def toggle_openrouter_base(provider_choice):
|
217 |
+
return gr.update(visible=provider_choice == "openrouter")
|
218 |
+
|
219 |
+
provider.change(
|
220 |
+
fn=toggle_openrouter_base,
|
221 |
+
inputs=[provider],
|
222 |
+
outputs=[openrouter_base]
|
223 |
+
)
|
224 |
+
|
225 |
+
submit_btn = gr.Button("🎙️ Generate Audio", variant="primary")
|
226 |
+
|
227 |
+
with gr.Column(scale=2):
|
228 |
+
status_output = gr.Textbox(
|
229 |
+
label="Status",
|
230 |
+
placeholder="Processing status will appear here..."
|
231 |
)
|
232 |
+
audio_output = gr.Audio(
|
233 |
+
label="Generated Audio",
|
234 |
+
type="filepath"
|
235 |
+
)
|
236 |
+
|
237 |
+
# # Examples section
|
238 |
+
# gr.Examples(
|
239 |
+
# examples=[
|
240 |
+
# ["sample.pdf", "af_heart", "af_nicole", "openrouter", "your-api-key-here", "https://openrouter.ai/api/v1"],
|
241 |
+
# ],
|
242 |
+
# inputs=[pdf_input, speaker1_voice, speaker2_voice, provider, api_key, openrouter_base],
|
243 |
+
# outputs=[status_output, audio_output],
|
244 |
+
# fn=process_pdf,
|
245 |
+
# cache_examples=True,
|
246 |
+
# )
|
247 |
+
|
248 |
+
submit_btn.click(
|
249 |
+
fn=process_pdf,
|
250 |
+
inputs=[
|
251 |
+
pdf_input,
|
252 |
+
speaker1_voice,
|
253 |
+
speaker2_voice,
|
254 |
+
provider,
|
255 |
+
api_key,
|
256 |
+
openrouter_base
|
257 |
+
],
|
258 |
+
outputs=[status_output, audio_output],
|
259 |
+
api_name="generate"
|
260 |
+
)
|
261 |
+
|
262 |
+
gr.Markdown(
|
263 |
+
"""
|
264 |
+
### 📝 Notes
|
265 |
+
- Make sure your PDF is readable and contains text (not scanned images)
|
266 |
+
- Processing large PDFs may take a few minutes
|
267 |
+
- You need a valid OpenAI/OpenRouter API key set as environment variable
|
268 |
+
"""
|
269 |
+
)
|
270 |
+
|
271 |
return app
|
272 |
|
|
|
|
|
273 |
if __name__ == "__main__":
|
274 |
+
demo = create_gradio_app()
|
275 |
+
demo.queue().launch(
|
276 |
+
server_name="0.0.0.0",
|
277 |
+
server_port=7860,
|
278 |
+
share=True,
|
279 |
+
debug=True,
|
280 |
+
pwa=True
|
281 |
+
)
|
notebook_lm_kokoro.py
CHANGED
@@ -23,14 +23,6 @@ import asyncio
|
|
23 |
import ast
|
24 |
import json
|
25 |
import warnings
|
26 |
-
import torch
|
27 |
-
import time
|
28 |
-
try:
|
29 |
-
from moshi.models.loaders import CheckpointInfo
|
30 |
-
from moshi.models.tts import DEFAULT_DSM_TTS_REPO, DEFAULT_DSM_TTS_VOICE_REPO, TTSModel
|
31 |
-
except ImportError:
|
32 |
-
CheckpointInfo = None
|
33 |
-
TTSModel = None
|
34 |
warnings.filterwarnings("ignore")
|
35 |
|
36 |
# Set your OpenAI (or OpenRouter) API key from the environment
|
@@ -38,17 +30,6 @@ openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
38 |
# For OpenRouter compatibility, set the API base if provided.
|
39 |
openai.api_base = os.getenv("OPENROUTER_API_BASE", "https://api.openai.com/v1")
|
40 |
|
41 |
-
# Set cache dirs BEFORE importing torch, transformers, or moshi
|
42 |
-
os.environ["HF_HOME"] = "/tmp/huggingface"
|
43 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface/transformers"
|
44 |
-
os.environ["XDG_CACHE_HOME"] = "/tmp/huggingface"
|
45 |
-
os.environ["TORCH_HOME"] = "/tmp/torch"
|
46 |
-
os.environ["MOSHI_CACHE_DIR"] = "/tmp/moshi"
|
47 |
-
|
48 |
-
# Explicitly override ~/.cache
|
49 |
-
os.environ["HOME"] = "/tmp/home"
|
50 |
-
os.makedirs("/tmp/home", exist_ok=True)
|
51 |
-
|
52 |
pdf = "1706.03762v7.pdf"
|
53 |
|
54 |
|
@@ -173,8 +154,7 @@ def generate_audio_from_script(script, output_file="podcast_audio.wav"):
|
|
173 |
chosen_voice = voice_map.get(speaker, "af_heart")
|
174 |
print(f"Generating audio for {speaker} with voice '{chosen_voice}'...")
|
175 |
|
176 |
-
|
177 |
-
pipeline = KPipeline(lang_code="a", repo_id="hexgrad/Kokoro-82M")
|
178 |
generator = pipeline(dialogue, voice=chosen_voice)
|
179 |
|
180 |
segment_audio = []
|
@@ -206,67 +186,6 @@ def generate_audio_from_script(script, output_file="podcast_audio.wav"):
|
|
206 |
print(f"Error processing transcript: {e}")
|
207 |
return
|
208 |
|
209 |
-
def generate_audio_kyutai(script, speaker1_voice=None, speaker2_voice=None, output_file="kyutai_audio.wav"):
|
210 |
-
if TTSModel is None:
|
211 |
-
print("Moshi is not installed.")
|
212 |
-
return None
|
213 |
-
|
214 |
-
try:
|
215 |
-
print(f"[INFO] Requested Kyutai voices: {speaker1_voice=}, {speaker2_voice=}")
|
216 |
-
# Reject absolute/local paths
|
217 |
-
if os.path.isabs(speaker1_voice) or os.path.isfile(speaker1_voice):
|
218 |
-
raise ValueError(f"❌ Invalid voice path for speaker1: {speaker1_voice}")
|
219 |
-
if os.path.isabs(speaker2_voice) or os.path.isfile(speaker2_voice):
|
220 |
-
raise ValueError(f"❌ Invalid voice path for speaker2: {speaker2_voice}")
|
221 |
-
|
222 |
-
transcript_list = ast.literal_eval(script)
|
223 |
-
|
224 |
-
# Load TTS model
|
225 |
-
checkpoint_info = CheckpointInfo.from_hf_repo(DEFAULT_DSM_TTS_REPO)
|
226 |
-
tts_model = TTSModel.from_checkpoint_info(
|
227 |
-
checkpoint_info,
|
228 |
-
n_q=32,
|
229 |
-
temp=0.6,
|
230 |
-
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
231 |
-
)
|
232 |
-
|
233 |
-
# Use voice names directly from dropdown
|
234 |
-
print("[INFO] Resolving voice paths...")
|
235 |
-
|
236 |
-
start = time.time()
|
237 |
-
voice1_path = tts_model.get_voice_path(speaker1_voice)
|
238 |
-
print(f"[INFO] Got voice1_path in {time.time() - start:.2f}s")
|
239 |
-
|
240 |
-
start = time.time()
|
241 |
-
voice2_path = tts_model.get_voice_path(speaker2_voice)
|
242 |
-
print(f"[INFO] Got voice2_path in {time.time() - start:.2f}s")
|
243 |
-
|
244 |
-
texts = [dialogue for _, dialogue in transcript_list]
|
245 |
-
entries = tts_model.prepare_script(texts, padding_between=1)
|
246 |
-
|
247 |
-
condition_attributes = tts_model.make_condition_attributes([voice1_path, voice2_path], cfg_coef=2.0)
|
248 |
-
|
249 |
-
pcms = []
|
250 |
-
def _on_frame(frame):
|
251 |
-
if (frame != -1).all():
|
252 |
-
pcm = tts_model.mimi.decode(frame[:, 1:, :]).cpu().numpy()
|
253 |
-
pcms.append(np.clip(pcm[0, 0], -1, 1))
|
254 |
-
|
255 |
-
with tts_model.mimi.streaming(1):
|
256 |
-
tts_model.generate([entries], [condition_attributes], on_frame=_on_frame)
|
257 |
-
|
258 |
-
if pcms:
|
259 |
-
audio = np.concatenate(pcms, axis=-1)
|
260 |
-
sf.write(output_file, audio, tts_model.mimi.sample_rate)
|
261 |
-
print(f"[SUCCESS] Audio saved to: {output_file}")
|
262 |
-
return output_file
|
263 |
-
|
264 |
-
print("[WARNING] No audio segments were produced.")
|
265 |
-
return None
|
266 |
-
|
267 |
-
except Exception as e:
|
268 |
-
print(f"[ERROR] Kyutai TTS error: {e}")
|
269 |
-
return None
|
270 |
|
271 |
def generate_tts():
|
272 |
pipeline = KPipeline(lang_code="a")
|
@@ -303,16 +222,15 @@ def generate_podcast_script(
|
|
303 |
Set provider="openrouter" to use OpenRouter, otherwise uses OpenAI.
|
304 |
"""
|
305 |
pdf_basename = os.path.splitext(os.path.basename(pdf_path))[0]
|
306 |
-
folder = os.path.join(
|
307 |
os.makedirs(folder, exist_ok=True)
|
308 |
|
309 |
destination_pdf = os.path.join(folder, os.path.basename(pdf_path))
|
310 |
-
|
311 |
shutil.copy(pdf_path, destination_pdf)
|
312 |
print(f"Copied {pdf_path} to {destination_pdf}")
|
313 |
-
|
314 |
-
print(f"
|
315 |
-
destination_pdf = pdf_path # fallback
|
316 |
|
317 |
transcript_path = os.path.join(folder, output_file)
|
318 |
# If transcript exists, load and return it without calling the API.
|
|
|
23 |
import ast
|
24 |
import json
|
25 |
import warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
warnings.filterwarnings("ignore")
|
27 |
|
28 |
# Set your OpenAI (or OpenRouter) API key from the environment
|
|
|
30 |
# For OpenRouter compatibility, set the API base if provided.
|
31 |
openai.api_base = os.getenv("OPENROUTER_API_BASE", "https://api.openai.com/v1")
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
pdf = "1706.03762v7.pdf"
|
34 |
|
35 |
|
|
|
154 |
chosen_voice = voice_map.get(speaker, "af_heart")
|
155 |
print(f"Generating audio for {speaker} with voice '{chosen_voice}'...")
|
156 |
|
157 |
+
pipeline = KPipeline(lang_code="a")
|
|
|
158 |
generator = pipeline(dialogue, voice=chosen_voice)
|
159 |
|
160 |
segment_audio = []
|
|
|
186 |
print(f"Error processing transcript: {e}")
|
187 |
return
|
188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
def generate_tts():
|
191 |
pipeline = KPipeline(lang_code="a")
|
|
|
222 |
Set provider="openrouter" to use OpenRouter, otherwise uses OpenAI.
|
223 |
"""
|
224 |
pdf_basename = os.path.splitext(os.path.basename(pdf_path))[0]
|
225 |
+
folder = os.path.join(os.getcwd(), pdf_basename)
|
226 |
os.makedirs(folder, exist_ok=True)
|
227 |
|
228 |
destination_pdf = os.path.join(folder, os.path.basename(pdf_path))
|
229 |
+
if not os.path.exists(destination_pdf):
|
230 |
shutil.copy(pdf_path, destination_pdf)
|
231 |
print(f"Copied {pdf_path} to {destination_pdf}")
|
232 |
+
else:
|
233 |
+
print(f"PDF already copied at {destination_pdf}")
|
|
|
234 |
|
235 |
transcript_path = os.path.join(folder, output_file)
|
236 |
# If transcript exists, load and return it without calling the API.
|