Spaces:
Sleeping
Sleeping
ref
Browse files- gradio_app.py +118 -209
- notebook_lm_kokoro.py +106 -52
gradio_app.py
CHANGED
@@ -1,263 +1,172 @@
|
|
1 |
-
# filepath: /Users/udaylunawat/Downloads/Data-Science-Projects/NotebookLM_clone/gradio_app.py
|
2 |
import os
|
3 |
import tempfile
|
4 |
import gradio as gr
|
5 |
-
from notebook_lm_kokoro import generate_podcast_script, KPipeline
|
6 |
-
import soundfile as sf
|
7 |
-
import numpy as np
|
8 |
-
import ast
|
9 |
import shutil
|
|
|
|
|
|
|
10 |
import warnings
|
11 |
-
import os
|
12 |
-
import gradio as gr
|
13 |
-
import concurrent.futures
|
14 |
-
import multiprocessing
|
15 |
-
from notebook_lm_kokoro import generate_podcast_script, generate_audio_from_script
|
16 |
-
warnings.filterwarnings("ignore")
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
|
|
23 |
speaker, dialogue = entry
|
24 |
chosen_voice = voice_map.get(speaker, "af_heart")
|
25 |
-
print(f"Generating audio for {speaker} with voice '{chosen_voice}'...")
|
26 |
-
|
27 |
pipeline = KPipeline(lang_code="a", repo_id="hexgrad/Kokoro-82M")
|
28 |
generator = pipeline(dialogue, voice=chosen_voice)
|
29 |
-
|
30 |
-
segment_audio = []
|
31 |
-
for _, _, audio in generator:
|
32 |
-
segment_audio.append(audio)
|
33 |
-
|
34 |
-
if segment_audio:
|
35 |
-
return np.concatenate(segment_audio, axis=0)
|
36 |
-
return None
|
37 |
|
38 |
def generate_audio_from_script_with_voices(script, speaker1_voice, speaker2_voice, output_file):
|
39 |
-
|
40 |
-
|
41 |
-
# Clean up the script string if needed
|
42 |
-
script = script.strip()
|
43 |
-
if not script.startswith("[") or not script.endswith("]"):
|
44 |
-
print("Invalid transcript format. Expected a list of tuples.")
|
45 |
-
return None
|
46 |
|
|
|
47 |
try:
|
48 |
transcript_list = ast.literal_eval(script)
|
49 |
if not isinstance(transcript_list, list):
|
50 |
raise ValueError("Transcript is not a list")
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
entries_with_voice_map = [(entry, voice_map) for entry in transcript_list]
|
55 |
|
56 |
-
|
57 |
-
# Process segments in parallel
|
58 |
-
with concurrent.futures.ProcessPoolExecutor(max_workers=NUM_WORKERS) as executor:
|
59 |
-
# Map the processing function across all dialogue entries
|
60 |
-
results = list(executor.map(process_segment, entries_with_voice_map))
|
61 |
-
|
62 |
-
# Filter out None results and combine audio segments
|
63 |
-
all_audio_segments = [r for r in results if r is not None]
|
64 |
-
|
65 |
-
except Exception as e:
|
66 |
-
print(f"Error during audio generation: {e}")
|
67 |
return None
|
68 |
-
|
69 |
-
if not all_audio_segments:
|
70 |
-
print("No audio segments were generated")
|
71 |
-
return None
|
72 |
-
|
73 |
-
# Add a pause between segments
|
74 |
sample_rate = 24000
|
75 |
pause = np.zeros(sample_rate, dtype=np.float32)
|
76 |
-
final_audio =
|
77 |
-
for seg in
|
78 |
final_audio = np.concatenate((final_audio, pause, seg), axis=0)
|
79 |
-
|
80 |
sf.write(output_file, final_audio, sample_rate)
|
81 |
-
print(f"Saved final audio as {output_file}")
|
82 |
return output_file
|
83 |
-
|
84 |
except Exception as e:
|
85 |
-
print(f"
|
86 |
return None
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
"""Process the uploaded PDF file and generate audio"""
|
91 |
try:
|
92 |
-
|
93 |
-
|
94 |
-
if provider == "
|
|
|
|
|
|
|
|
|
95 |
os.environ["OPENROUTER_API_BASE"] = "https://api.openai.com/v1"
|
96 |
-
|
|
|
97 |
os.environ["OPENROUTER_API_BASE"] = openrouter_base or "https://openrouter.ai/api/v1"
|
98 |
|
99 |
-
# Check if file is uploaded
|
100 |
if pdf_file is None:
|
101 |
return "No file uploaded", None
|
102 |
|
103 |
-
|
104 |
-
base_dir = "/tmp" if os.access("/tmp", os.W_OK) else os.getcwd()
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
shutil.copy2(pdf_file.name, tmp_path)
|
109 |
-
print(f"[INFO] Uploaded PDF saved at {tmp_path}")
|
110 |
|
111 |
-
# Generate podcast script
|
112 |
-
transcript, transcript_path = generate_podcast_script(tmp_path, provider=provider)
|
113 |
if transcript is None:
|
114 |
-
return "
|
115 |
-
|
116 |
-
|
117 |
-
audio_output_path = os.path.join(
|
118 |
-
os.path.dirname(tmp_path),
|
119 |
-
f"audio_{os.path.basename(tmp_path).replace('.pdf', '.wav')}"
|
120 |
-
)
|
121 |
-
|
122 |
-
# Generate audio using ProcessPoolExecutor
|
123 |
-
with concurrent.futures.ProcessPoolExecutor(max_workers=NUM_WORKERS) as executor:
|
124 |
-
print(f"[INFO] Processing audio with {NUM_WORKERS} CPU cores")
|
125 |
-
future = executor.submit(
|
126 |
-
generate_audio_from_script_with_voices,
|
127 |
-
transcript, speaker1_voice, speaker2_voice, audio_output_path
|
128 |
-
)
|
129 |
-
result = future.result()
|
130 |
|
131 |
-
|
132 |
-
return "Error generating audio", None
|
133 |
|
134 |
-
|
|
|
|
|
|
|
135 |
|
|
|
136 |
except Exception as e:
|
137 |
-
print(f"
|
138 |
-
return f"Error
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
def create_gradio_app():
|
142 |
-
|
143 |
-
css = """
|
144 |
-
.gradio-container {max-width: 900px !important}
|
145 |
-
"""
|
146 |
-
|
147 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as app:
|
148 |
-
gr.Markdown(
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
"""
|
153 |
-
)
|
154 |
-
|
155 |
with gr.Row():
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
with gr.Row():
|
164 |
-
speaker1_voice = gr.Dropdown(
|
165 |
-
choices=["af_heart", "af_bella", "hf_beta"],
|
166 |
-
value="af_heart",
|
167 |
-
label="Speaker 1 Voice"
|
168 |
-
)
|
169 |
-
speaker2_voice = gr.Dropdown(
|
170 |
-
choices=["af_nicole", "af_heart", "bf_emma"],
|
171 |
-
value="bf_emma",
|
172 |
-
label="Speaker 2 Voice"
|
173 |
-
)
|
174 |
-
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
196 |
|
197 |
-
# Show/hide OpenRouter base URL based on provider selection
|
198 |
-
def toggle_openrouter_base(provider_choice):
|
199 |
-
return gr.update(visible=provider_choice == "openrouter")
|
200 |
-
|
201 |
-
provider.change(
|
202 |
-
fn=toggle_openrouter_base,
|
203 |
-
inputs=[provider],
|
204 |
-
outputs=[openrouter_base]
|
205 |
-
)
|
206 |
-
|
207 |
-
submit_btn = gr.Button("🎙️ Generate Audio", variant="primary")
|
208 |
-
|
209 |
-
with gr.Column(scale=2):
|
210 |
-
status_output = gr.Textbox(
|
211 |
-
label="Status",
|
212 |
-
placeholder="Processing status will appear here..."
|
213 |
-
)
|
214 |
-
audio_output = gr.Audio(
|
215 |
-
label="Generated Audio",
|
216 |
-
type="filepath"
|
217 |
-
)
|
218 |
-
|
219 |
-
# # Examples section
|
220 |
-
# gr.Examples(
|
221 |
-
# examples=[
|
222 |
-
# ["sample.pdf", "af_heart", "af_nicole", "openrouter", "your-api-key-here", "https://openrouter.ai/api/v1"],
|
223 |
-
# ],
|
224 |
-
# inputs=[pdf_input, speaker1_voice, speaker2_voice, provider, api_key, openrouter_base],
|
225 |
-
# outputs=[status_output, audio_output],
|
226 |
-
# fn=process_pdf,
|
227 |
-
# cache_examples=True,
|
228 |
-
# )
|
229 |
-
|
230 |
submit_btn.click(
|
231 |
-
|
232 |
-
inputs=[
|
233 |
-
|
234 |
-
|
235 |
-
speaker2_voice,
|
236 |
-
provider,
|
237 |
-
api_key,
|
238 |
-
openrouter_base
|
239 |
-
],
|
240 |
-
outputs=[status_output, audio_output],
|
241 |
-
api_name="generate"
|
242 |
)
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
253 |
return app
|
254 |
|
255 |
if __name__ == "__main__":
|
256 |
-
|
257 |
-
demo.queue().launch(
|
258 |
-
server_name="0.0.0.0",
|
259 |
-
server_port=7860,
|
260 |
-
share=True,
|
261 |
-
debug=True,
|
262 |
-
pwa=True
|
263 |
-
)
|
|
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
4 |
import shutil
|
5 |
+
import ast
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
import warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
try:
|
11 |
+
from moshi.models.tts import TTSModel
|
12 |
+
except ImportError:
|
13 |
+
print("Moshi TTSModel not available — install Kyutai’s version via pip.")
|
14 |
+
TTSModel = None
|
15 |
+
|
16 |
+
from notebook_lm_kokoro import (
|
17 |
+
generate_podcast_script,
|
18 |
+
generate_audio_from_script,
|
19 |
+
generate_audio_kyutai,
|
20 |
+
KPipeline,
|
21 |
+
)
|
22 |
|
23 |
+
warnings.filterwarnings("ignore")
|
24 |
+
|
25 |
+
def process_segment(entry, voice_map):
|
26 |
speaker, dialogue = entry
|
27 |
chosen_voice = voice_map.get(speaker, "af_heart")
|
|
|
|
|
28 |
pipeline = KPipeline(lang_code="a", repo_id="hexgrad/Kokoro-82M")
|
29 |
generator = pipeline(dialogue, voice=chosen_voice)
|
30 |
+
return np.concatenate([audio for _, _, audio in generator], axis=0) if generator else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def generate_audio_from_script_with_voices(script, speaker1_voice, speaker2_voice, output_file):
|
33 |
+
print("[DEBUG] Raw transcript string:")
|
34 |
+
print(script)
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
voice_map = {"Speaker 1": speaker1_voice, "Speaker 2": speaker2_voice}
|
37 |
try:
|
38 |
transcript_list = ast.literal_eval(script)
|
39 |
if not isinstance(transcript_list, list):
|
40 |
raise ValueError("Transcript is not a list")
|
41 |
|
42 |
+
entries = [entry for entry in transcript_list if isinstance(entry, tuple) and len(entry) == 2]
|
43 |
+
results = [process_segment(entry, voice_map) for entry in entries if entry is not None]
|
|
|
44 |
|
45 |
+
if not results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
sample_rate = 24000
|
48 |
pause = np.zeros(sample_rate, dtype=np.float32)
|
49 |
+
final_audio = results[0]
|
50 |
+
for seg in results[1:]:
|
51 |
final_audio = np.concatenate((final_audio, pause, seg), axis=0)
|
|
|
52 |
sf.write(output_file, final_audio, sample_rate)
|
|
|
53 |
return output_file
|
|
|
54 |
except Exception as e:
|
55 |
+
print(f"Transcript parse error: {e}")
|
56 |
return None
|
57 |
|
58 |
+
def process_pdf(pdf_file, speaker1_voice, speaker2_voice, kyutai_voice1, kyutai_voice2,
|
59 |
+
provider, openai_key=None, openrouter_key=None, openrouter_base=None, tts_engine=None):
|
|
|
60 |
try:
|
61 |
+
if provider == "openai" and not openai_key:
|
62 |
+
return "OpenAI API key is required", None
|
63 |
+
if provider == "openrouter" and not openrouter_key:
|
64 |
+
return "OpenRouter API key is required", None
|
65 |
+
|
66 |
+
if provider in ["openai", "kyutai"]:
|
67 |
+
os.environ["OPENAI_API_KEY"] = openai_key or ""
|
68 |
os.environ["OPENROUTER_API_BASE"] = "https://api.openai.com/v1"
|
69 |
+
if provider in ["openrouter", "kyutai"]:
|
70 |
+
os.environ["OPENAI_API_KEY"] = openrouter_key or ""
|
71 |
os.environ["OPENROUTER_API_BASE"] = openrouter_base or "https://openrouter.ai/api/v1"
|
72 |
|
|
|
73 |
if pdf_file is None:
|
74 |
return "No file uploaded", None
|
75 |
|
76 |
+
tmp_path = pdf_file.name
|
|
|
77 |
|
78 |
+
script_provider = "openrouter" if provider == "kyutai" and openrouter_key else provider
|
79 |
+
transcript, _ = generate_podcast_script(pdf_file.name, provider=script_provider)
|
|
|
|
|
80 |
|
|
|
|
|
81 |
if transcript is None:
|
82 |
+
return "Transcript generation failed: got None", None
|
83 |
+
if not transcript.strip().startswith("["):
|
84 |
+
return f"Malformed transcript:\n{transcript}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
audio_path = os.path.join(os.path.dirname(tmp_path), f"audio_{os.path.basename(tmp_path).replace('.pdf', '.wav')}")
|
|
|
87 |
|
88 |
+
if tts_engine == "kyutai":
|
89 |
+
result = generate_audio_kyutai(transcript, kyutai_voice1, kyutai_voice2, audio_path)
|
90 |
+
else:
|
91 |
+
result = generate_audio_from_script_with_voices(transcript, speaker1_voice, speaker2_voice, audio_path)
|
92 |
|
93 |
+
return ("Process complete!", result) if result else ("Error generating audio", None)
|
94 |
except Exception as e:
|
95 |
+
print(f"process_pdf error: {e}")
|
96 |
+
return f"Error: {e}", None
|
97 |
+
|
98 |
+
def update_ui(provider, tts_engine):
|
99 |
+
return [
|
100 |
+
gr.update(visible=tts_engine == "kokoro"),
|
101 |
+
gr.update(visible=tts_engine == "kokoro"),
|
102 |
+
gr.update(visible=tts_engine == "kyutai"),
|
103 |
+
gr.update(visible=tts_engine == "kyutai"),
|
104 |
+
gr.update(visible=provider in ["openai", "kyutai"]),
|
105 |
+
gr.update(visible=provider in ["openrouter", "kyutai"]),
|
106 |
+
gr.update(visible=provider == "openrouter"),
|
107 |
+
]
|
108 |
|
109 |
def create_gradio_app():
|
110 |
+
css = ".gradio-container {max-width: 900px !important}"
|
|
|
|
|
|
|
|
|
111 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as app:
|
112 |
+
gr.Markdown("# 🎧 PDF to Podcast — NotebookLM + Kokoro/Kyutai")
|
113 |
+
|
114 |
+
pdf_input = gr.File(file_types=[".pdf"], type="filepath", label="📄 Upload your PDF", scale=2)
|
115 |
+
|
|
|
|
|
|
|
116 |
with gr.Row():
|
117 |
+
speaker1_voice = gr.Dropdown(["af_heart", "af_bella", "hf_beta"], value="af_heart", label="Speaker 1 Voice")
|
118 |
+
speaker2_voice = gr.Dropdown(["af_nicole", "af_heart", "bf_emma"], value="bf_emma", label="Speaker 2 Voice")
|
119 |
+
provider = gr.Radio(["openai", "openrouter"], value="openrouter", label="API Provider")
|
120 |
+
openai_key = gr.Textbox(type="password", label="OpenAI Key")
|
121 |
+
openrouter_key = gr.Textbox(type="password", label="OpenRouter Key")
|
122 |
+
openrouter_base = gr.Textbox(placeholder="https://openrouter.ai/api/v1", label="OpenRouter Base URL")
|
123 |
+
tts_engine = gr.Radio(["kokoro", "kyutai"], value="kokoro", label="TTS Engine")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
with gr.Row():
|
126 |
+
kyutai_voice1 = gr.Dropdown([
|
127 |
+
"expresso/ex03-ex01_happy_001_channel1_334s.wav",
|
128 |
+
"expresso/ex03-ex02_narration_001_channel1_674s.wav",
|
129 |
+
"vctk/p226_023_mic1.wav"
|
130 |
+
],
|
131 |
+
value="expresso/ex03-ex01_happy_001_channel1_334s.wav",
|
132 |
+
label="Kyutai Voice 1",
|
133 |
+
visible=True)
|
134 |
+
|
135 |
+
kyutai_voice2 = gr.Dropdown([
|
136 |
+
"expresso/ex03-ex01_happy_001_channel1_334s.wav",
|
137 |
+
"expresso/ex03-ex02_narration_001_channel1_674s.wav",
|
138 |
+
"vctk/p225_023_mic1.wav"
|
139 |
+
],
|
140 |
+
value="expresso/ex03-ex02_narration_001_channel1_674s.wav",
|
141 |
+
label="Kyutai Voice 2",
|
142 |
+
visible=True)
|
143 |
+
|
144 |
+
submit_btn = gr.Button("🎙️ Generate Podcast", variant="primary")
|
145 |
+
status_output = gr.Textbox(label="📝 Status", interactive=False)
|
146 |
+
audio_output = gr.Audio(type="filepath", label="🎵 Your Podcast")
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
submit_btn.click(
|
149 |
+
process_pdf,
|
150 |
+
inputs=[pdf_input, speaker1_voice, speaker2_voice, kyutai_voice1, kyutai_voice2,
|
151 |
+
provider, openai_key, openrouter_key, openrouter_base, tts_engine],
|
152 |
+
outputs=[status_output, audio_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
)
|
154 |
+
|
155 |
+
provider.change(update_ui, [provider, tts_engine],
|
156 |
+
[speaker1_voice, speaker2_voice, kyutai_voice1, kyutai_voice2,
|
157 |
+
openai_key, openrouter_key, openrouter_base])
|
158 |
+
tts_engine.change(update_ui, [provider, tts_engine],
|
159 |
+
[speaker1_voice, speaker2_voice, kyutai_voice1, kyutai_voice2,
|
160 |
+
openai_key, openrouter_key, openrouter_base])
|
161 |
+
|
162 |
+
gr.Markdown("""
|
163 |
+
**📌 Tips**
|
164 |
+
- Upload a clean, structured PDF.
|
165 |
+
- Pick your API provider and enter relevant keys.
|
166 |
+
- Choose the TTS engine and customize voices.
|
167 |
+
""")
|
168 |
+
|
169 |
return app
|
170 |
|
171 |
if __name__ == "__main__":
|
172 |
+
create_gradio_app().queue().launch(server_name="0.0.0.0", server_port=7860, share=True, debug=True, pwa=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebook_lm_kokoro.py
CHANGED
@@ -12,17 +12,23 @@ If using OpenRouter, you can also set:
|
|
12 |
"""
|
13 |
|
14 |
from kokoro import KPipeline
|
15 |
-
from IPython.display import Audio # Only needed if displaying in a notebook
|
16 |
import soundfile as sf
|
17 |
import PyPDF2
|
18 |
import numpy as np
|
19 |
import openai
|
20 |
import os
|
21 |
import shutil
|
22 |
-
import asyncio
|
23 |
import ast
|
24 |
import json
|
25 |
import warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
warnings.filterwarnings("ignore")
|
27 |
|
28 |
# Set your OpenAI (or OpenRouter) API key from the environment
|
@@ -30,8 +36,6 @@ openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
30 |
# For OpenRouter compatibility, set the API base if provided.
|
31 |
openai.api_base = os.getenv("OPENROUTER_API_BASE", "https://api.openai.com/v1")
|
32 |
|
33 |
-
pdf = "1706.03762v7.pdf"
|
34 |
-
|
35 |
|
36 |
def pdf_to_prompted_text(pdf_path):
|
37 |
"""
|
@@ -134,7 +138,7 @@ def generate_audio_from_script(script, output_file="podcast_audio.wav"):
|
|
134 |
# Clean up the script string if needed
|
135 |
script = script.strip()
|
136 |
if not script.startswith("[") or not script.endswith("]"):
|
137 |
-
print("Invalid transcript format. Expected a list of tuples.")
|
138 |
return
|
139 |
|
140 |
try:
|
@@ -147,45 +151,102 @@ def generate_audio_from_script(script, output_file="podcast_audio.wav"):
|
|
147 |
# Process each dialogue entry
|
148 |
for i, entry in enumerate(transcript_list):
|
149 |
if not isinstance(entry, tuple) or len(entry) != 2:
|
150 |
-
print(f"Skipping invalid entry {i}: {entry}")
|
151 |
continue
|
152 |
|
153 |
speaker, dialogue = entry
|
154 |
chosen_voice = voice_map.get(speaker, "af_heart")
|
155 |
-
print(f"Generating audio for {speaker} with voice '{chosen_voice}'...")
|
156 |
|
157 |
-
pipeline = KPipeline(lang_code="a")
|
158 |
generator = pipeline(dialogue, voice=chosen_voice)
|
159 |
|
160 |
-
segment_audio = []
|
161 |
-
for j, (gs, ps, audio) in enumerate(generator):
|
162 |
-
# print(
|
163 |
-
# f"{speaker} - Segment {j}: Global Step = {gs}, Partial Step = {ps}"
|
164 |
-
# )
|
165 |
-
segment_audio.append(audio)
|
166 |
-
|
167 |
if segment_audio:
|
168 |
-
|
169 |
-
all_audio_segments.append(segment_full)
|
170 |
|
171 |
if not all_audio_segments:
|
172 |
-
print("No audio segments were generated.")
|
173 |
return
|
174 |
|
175 |
# Add a pause between segments
|
176 |
sample_rate = 24000
|
177 |
pause = np.zeros(sample_rate, dtype=np.float32)
|
178 |
-
final_audio =
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
182 |
sf.write(output_file, final_audio, sample_rate)
|
183 |
-
print(f"Saved final audio as {output_file}")
|
184 |
|
185 |
except Exception as e:
|
186 |
-
|
|
|
|
|
187 |
return
|
188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
def generate_tts():
|
191 |
pipeline = KPipeline(lang_code="a")
|
@@ -222,25 +283,23 @@ def generate_podcast_script(
|
|
222 |
Set provider="openrouter" to use OpenRouter, otherwise uses OpenAI.
|
223 |
"""
|
224 |
pdf_basename = os.path.splitext(os.path.basename(pdf_path))[0]
|
225 |
-
|
226 |
-
# Use /tmp if writable, else fallback to current working directory
|
227 |
-
base_dir = "/tmp" if os.access("/tmp", os.W_OK) else os.getcwd()
|
228 |
-
folder = os.path.join(base_dir, pdf_basename)
|
229 |
os.makedirs(folder, exist_ok=True)
|
230 |
|
231 |
destination_pdf = os.path.join(folder, os.path.basename(pdf_path))
|
232 |
-
|
233 |
shutil.copy(pdf_path, destination_pdf)
|
234 |
-
print(f"Copied {pdf_path} to {destination_pdf}")
|
235 |
-
|
236 |
-
print(f"
|
|
|
237 |
|
238 |
transcript_path = os.path.join(folder, output_file)
|
239 |
# If transcript exists, load and return it without calling the API.
|
240 |
if os.path.exists(transcript_path):
|
241 |
with open(transcript_path, "r") as f:
|
242 |
transcript = f.read()
|
243 |
-
print(f"Transcript loaded from {transcript_path}")
|
244 |
return transcript, transcript_path
|
245 |
|
246 |
# Otherwise, generate the transcript.
|
@@ -265,15 +324,15 @@ def generate_podcast_script(
|
|
265 |
if provider == "openrouter":
|
266 |
api_key = os.getenv("OPENAI_API_KEY")
|
267 |
base_url = os.getenv("OPENROUTER_API_BASE", "https://openrouter.ai/api/v1")
|
268 |
-
print("Using OpenRouter API endpoint.")
|
269 |
else:
|
270 |
api_key = os.getenv("OPENAI_API_KEY")
|
271 |
base_url = "https://api.openai.com/v1"
|
272 |
-
print("Using OpenAI API endpoint.")
|
273 |
|
274 |
client = openai.OpenAI(api_key=api_key, base_url=base_url)
|
275 |
|
276 |
-
print(f"Sending request to {base_url} to generate a podcast script...")
|
277 |
response = client.chat.completions.create(
|
278 |
model="gpt-4o-mini",
|
279 |
messages=messages,
|
@@ -298,10 +357,10 @@ def generate_podcast_script(
|
|
298 |
transcript_list = []
|
299 |
for i, entry in enumerate(dialogue):
|
300 |
if not isinstance(entry, list) or len(entry) != 2:
|
301 |
-
print(f"Skipping invalid dialogue entry {i}: {entry}")
|
302 |
continue
|
303 |
if entry[0] not in ["Speaker 1", "Speaker 2"]:
|
304 |
-
print(f"Invalid speaker label in entry {i}: {entry[0]}")
|
305 |
continue
|
306 |
transcript_list.append(tuple(entry))
|
307 |
|
@@ -312,31 +371,26 @@ def generate_podcast_script(
|
|
312 |
script = str(transcript_list)
|
313 |
|
314 |
except json.JSONDecodeError as e:
|
315 |
-
print(f"
|
316 |
-
print(f"Raw response: {response.choices[0].message.content}")
|
317 |
return None, None
|
318 |
except Exception as e:
|
319 |
-
print(f"Error processing response: {e}")
|
320 |
return None, None
|
321 |
|
322 |
# Save the transcript
|
323 |
with open(transcript_path, "w") as f:
|
324 |
f.write(script)
|
325 |
-
print(f"Saved podcast script as {transcript_path}")
|
326 |
|
327 |
return script, transcript_path
|
328 |
|
329 |
|
330 |
-
async def _generate_script_async(messages):
|
331 |
-
response = await openai.ChatCompletion.acreate(
|
332 |
-
model="gpt-4o-mini", messages=messages, temperature=0.7, max_tokens=20000
|
333 |
-
)
|
334 |
-
return response["choices"][0]["message"]["content"]
|
335 |
-
|
336 |
|
|
|
337 |
if __name__ == "__main__":
|
338 |
-
|
339 |
transcript, transcript_path = generate_podcast_script(pdf, provider="openrouter")
|
340 |
-
|
341 |
-
|
342 |
-
|
|
|
12 |
"""
|
13 |
|
14 |
from kokoro import KPipeline
|
|
|
15 |
import soundfile as sf
|
16 |
import PyPDF2
|
17 |
import numpy as np
|
18 |
import openai
|
19 |
import os
|
20 |
import shutil
|
|
|
21 |
import ast
|
22 |
import json
|
23 |
import warnings
|
24 |
+
import torch
|
25 |
+
import time
|
26 |
+
try:
|
27 |
+
from moshi.models.loaders import CheckpointInfo
|
28 |
+
from moshi.models.tts import DEFAULT_DSM_TTS_REPO, DEFAULT_DSM_TTS_VOICE_REPO, TTSModel
|
29 |
+
except ImportError:
|
30 |
+
CheckpointInfo = None
|
31 |
+
TTSModel = None
|
32 |
warnings.filterwarnings("ignore")
|
33 |
|
34 |
# Set your OpenAI (or OpenRouter) API key from the environment
|
|
|
36 |
# For OpenRouter compatibility, set the API base if provided.
|
37 |
openai.api_base = os.getenv("OPENROUTER_API_BASE", "https://api.openai.com/v1")
|
38 |
|
|
|
|
|
39 |
|
40 |
def pdf_to_prompted_text(pdf_path):
|
41 |
"""
|
|
|
138 |
# Clean up the script string if needed
|
139 |
script = script.strip()
|
140 |
if not script.startswith("[") or not script.endswith("]"):
|
141 |
+
print("[ERROR] Invalid transcript format. Expected a list of tuples.")
|
142 |
return
|
143 |
|
144 |
try:
|
|
|
151 |
# Process each dialogue entry
|
152 |
for i, entry in enumerate(transcript_list):
|
153 |
if not isinstance(entry, tuple) or len(entry) != 2:
|
154 |
+
print(f"[WARNING] Skipping invalid entry {i}: {entry}")
|
155 |
continue
|
156 |
|
157 |
speaker, dialogue = entry
|
158 |
chosen_voice = voice_map.get(speaker, "af_heart")
|
159 |
+
print(f"[INFO] Generating audio for {speaker} with voice '{chosen_voice}'...")
|
160 |
|
161 |
+
pipeline = KPipeline(lang_code="a", repo_id="hexgrad/Kokoro-82M")
|
162 |
generator = pipeline(dialogue, voice=chosen_voice)
|
163 |
|
164 |
+
segment_audio = [audio for _, _, audio in generator]
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
if segment_audio:
|
166 |
+
all_audio_segments.append(np.concatenate(segment_audio, axis=0))
|
|
|
167 |
|
168 |
if not all_audio_segments:
|
169 |
+
print("[ERROR] No audio segments were generated.")
|
170 |
return
|
171 |
|
172 |
# Add a pause between segments
|
173 |
sample_rate = 24000
|
174 |
pause = np.zeros(sample_rate, dtype=np.float32)
|
175 |
+
final_audio = np.concatenate(
|
176 |
+
[seg if i == 0 else np.concatenate((pause, seg), axis=0)
|
177 |
+
for i, seg in enumerate(all_audio_segments)],
|
178 |
+
axis=0
|
179 |
+
)
|
180 |
sf.write(output_file, final_audio, sample_rate)
|
181 |
+
print(f"[INFO] Saved final audio as {output_file}")
|
182 |
|
183 |
except Exception as e:
|
184 |
+
import traceback
|
185 |
+
print(f"[ERROR] Exception while parsing transcript or generating audio: {e}")
|
186 |
+
traceback.print_exc()
|
187 |
return
|
188 |
|
189 |
+
def generate_audio_kyutai(script, speaker1_voice=None, speaker2_voice=None, output_file="kyutai_audio.wav"):
|
190 |
+
if TTSModel is None:
|
191 |
+
print("Moshi is not installed.")
|
192 |
+
return None
|
193 |
+
|
194 |
+
try:
|
195 |
+
print(f"[INFO] Requested Kyutai voices: {speaker1_voice=}, {speaker2_voice=}")
|
196 |
+
# Reject absolute/local paths
|
197 |
+
if os.path.isabs(speaker1_voice) or os.path.isfile(speaker1_voice):
|
198 |
+
raise ValueError(f"❌ Invalid voice path for speaker1: {speaker1_voice}")
|
199 |
+
if os.path.isabs(speaker2_voice) or os.path.isfile(speaker2_voice):
|
200 |
+
raise ValueError(f"❌ Invalid voice path for speaker2: {speaker2_voice}")
|
201 |
+
|
202 |
+
transcript_list = ast.literal_eval(script)
|
203 |
+
|
204 |
+
# Load TTS model
|
205 |
+
checkpoint_info = CheckpointInfo.from_hf_repo(DEFAULT_DSM_TTS_REPO)
|
206 |
+
tts_model = TTSModel.from_checkpoint_info(
|
207 |
+
checkpoint_info,
|
208 |
+
n_q=32,
|
209 |
+
temp=0.6,
|
210 |
+
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
211 |
+
)
|
212 |
+
|
213 |
+
# Use voice names directly from dropdown
|
214 |
+
print("[INFO] Resolving voice paths...")
|
215 |
+
|
216 |
+
start = time.time()
|
217 |
+
voice1_path = tts_model.get_voice_path(speaker1_voice)
|
218 |
+
print(f"[INFO] Got voice1_path in {time.time() - start:.2f}s")
|
219 |
+
|
220 |
+
start = time.time()
|
221 |
+
voice2_path = tts_model.get_voice_path(speaker2_voice)
|
222 |
+
print(f"[INFO] Got voice2_path in {time.time() - start:.2f}s")
|
223 |
+
|
224 |
+
texts = [dialogue for _, dialogue in transcript_list]
|
225 |
+
entries = tts_model.prepare_script(texts, padding_between=1)
|
226 |
+
|
227 |
+
condition_attributes = tts_model.make_condition_attributes([voice1_path, voice2_path], cfg_coef=2.0)
|
228 |
+
|
229 |
+
pcms = []
|
230 |
+
def _on_frame(frame):
|
231 |
+
if (frame != -1).all():
|
232 |
+
pcm = tts_model.mimi.decode(frame[:, 1:, :]).cpu().numpy()
|
233 |
+
pcms.append(np.clip(pcm[0, 0], -1, 1))
|
234 |
+
|
235 |
+
with tts_model.mimi.streaming(1):
|
236 |
+
tts_model.generate([entries], [condition_attributes], on_frame=_on_frame)
|
237 |
+
|
238 |
+
if pcms:
|
239 |
+
audio = np.concatenate(pcms, axis=-1)
|
240 |
+
sf.write(output_file, audio, tts_model.mimi.sample_rate)
|
241 |
+
print(f"[SUCCESS] Audio saved to: {output_file}")
|
242 |
+
return output_file
|
243 |
+
|
244 |
+
print("[WARNING] No audio segments were produced.")
|
245 |
+
return None
|
246 |
+
|
247 |
+
except Exception as e:
|
248 |
+
print(f"[ERROR] Kyutai TTS error: {e}")
|
249 |
+
return None
|
250 |
|
251 |
def generate_tts():
|
252 |
pipeline = KPipeline(lang_code="a")
|
|
|
283 |
Set provider="openrouter" to use OpenRouter, otherwise uses OpenAI.
|
284 |
"""
|
285 |
pdf_basename = os.path.splitext(os.path.basename(pdf_path))[0]
|
286 |
+
folder = os.path.join("/tmp", pdf_basename)
|
|
|
|
|
|
|
287 |
os.makedirs(folder, exist_ok=True)
|
288 |
|
289 |
destination_pdf = os.path.join(folder, os.path.basename(pdf_path))
|
290 |
+
try:
|
291 |
shutil.copy(pdf_path, destination_pdf)
|
292 |
+
print(f"[INFO] Copied {pdf_path} to {destination_pdf}")
|
293 |
+
except PermissionError:
|
294 |
+
print(f"[WARNING] Cannot copy PDF to {destination_pdf}, using original path.")
|
295 |
+
destination_pdf = pdf_path # fallback
|
296 |
|
297 |
transcript_path = os.path.join(folder, output_file)
|
298 |
# If transcript exists, load and return it without calling the API.
|
299 |
if os.path.exists(transcript_path):
|
300 |
with open(transcript_path, "r") as f:
|
301 |
transcript = f.read()
|
302 |
+
print(f"[INFO] Transcript loaded from {transcript_path}")
|
303 |
return transcript, transcript_path
|
304 |
|
305 |
# Otherwise, generate the transcript.
|
|
|
324 |
if provider == "openrouter":
|
325 |
api_key = os.getenv("OPENAI_API_KEY")
|
326 |
base_url = os.getenv("OPENROUTER_API_BASE", "https://openrouter.ai/api/v1")
|
327 |
+
print("[INFO] Using OpenRouter API endpoint.")
|
328 |
else:
|
329 |
api_key = os.getenv("OPENAI_API_KEY")
|
330 |
base_url = "https://api.openai.com/v1"
|
331 |
+
print("[INFO] Using OpenAI API endpoint.")
|
332 |
|
333 |
client = openai.OpenAI(api_key=api_key, base_url=base_url)
|
334 |
|
335 |
+
print(f"[INFO] Sending request to {base_url} to generate a podcast script...")
|
336 |
response = client.chat.completions.create(
|
337 |
model="gpt-4o-mini",
|
338 |
messages=messages,
|
|
|
357 |
transcript_list = []
|
358 |
for i, entry in enumerate(dialogue):
|
359 |
if not isinstance(entry, list) or len(entry) != 2:
|
360 |
+
print(f"[WARNING] Skipping invalid dialogue entry {i}: {entry}")
|
361 |
continue
|
362 |
if entry[0] not in ["Speaker 1", "Speaker 2"]:
|
363 |
+
print(f"[WARNING] Invalid speaker label in entry {i}: {entry[0]}")
|
364 |
continue
|
365 |
transcript_list.append(tuple(entry))
|
366 |
|
|
|
371 |
script = str(transcript_list)
|
372 |
|
373 |
except json.JSONDecodeError as e:
|
374 |
+
print(f"[ERROR] Invalid JSON response from API: {e}")
|
375 |
+
print(f"[ERROR] Raw response: {response.choices[0].message.content}")
|
376 |
return None, None
|
377 |
except Exception as e:
|
378 |
+
print(f"[ERROR] Error processing response: {e}")
|
379 |
return None, None
|
380 |
|
381 |
# Save the transcript
|
382 |
with open(transcript_path, "w") as f:
|
383 |
f.write(script)
|
384 |
+
print(f"[INFO] Saved podcast script as {transcript_path}")
|
385 |
|
386 |
return script, transcript_path
|
387 |
|
388 |
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
+
# Minimal test harness
|
391 |
if __name__ == "__main__":
|
392 |
+
pdf = "1706.03762v7.pdf"
|
393 |
transcript, transcript_path = generate_podcast_script(pdf, provider="openrouter")
|
394 |
+
if transcript and transcript_path:
|
395 |
+
audio_output = transcript_path.replace(".txt", ".wav")
|
396 |
+
generate_audio_from_script(transcript, output_file=audio_output)
|