Spaces:
Sleeping
Sleeping
File size: 1,569 Bytes
012d5b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import streamlit as st
from langchain.prompts import PromptTemplate
from langchain_community.llms import CTransformers
def getLLamaResponse(input_text,no_words,blog_style):
# LLma Model
llm = CTransformers(
model="models/llama-2-7b-chat.ggmlv3.q8_0.bin",
model_type="llma",
config={"max_new_tokens": 256, "temperature": 0.01}
)
# Prompt Template
template = """
Write a blog for {blog_style} job profile for a topic
{input_text} within {no_words} words.
"""
prompt = PromptTemplate(input_variables=["blog_style", "input_text","no_words"],
template=template)
# Generate the response from the LLama 2 Model
response = llm(prompt.format(style=blog_style, text=input_text, no_words=no_words))
print(response)
return response
st.set_page_config(page_title = "Generate Blogs",
page_icon = "π€",
layout = "centered",
initial_sidebar_state = "collapsed")
st.header("Generate Blogs π€")
input_text = st.text_input("Enter the Blog Topic")
# Creating 2 more columns for additional 2 fields
col1, col2 = st.columns([5,5])
with col1:
no_words = st.text_input("No of words")
with col2:
blog_style=st.selectbox("Writing the blog for",
("Researchers","Data Scientist","Common People"),index=0)
submit = st.button("Generate")
# Final Response
if submit:
st.write(getLLamaResponse(input_text,no_words,blog_style))
|