File size: 1,569 Bytes
012d5b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import streamlit as st
from langchain.prompts import PromptTemplate
from langchain_community.llms import CTransformers



def getLLamaResponse(input_text,no_words,blog_style):

    # LLma Model
    llm = CTransformers(
        model="models/llama-2-7b-chat.ggmlv3.q8_0.bin",
        model_type="llma",
        config={"max_new_tokens": 256, "temperature": 0.01}
    )
    
    # Prompt Template
    template = """
                Write a blog for {blog_style} job profile for a topic
                {input_text} within {no_words} words.
                """
    
    prompt = PromptTemplate(input_variables=["blog_style", "input_text","no_words"],
                            template=template)
    
    # Generate the response from the LLama 2 Model
    response = llm(prompt.format(style=blog_style, text=input_text, no_words=no_words))
    print(response)
    return response



st.set_page_config(page_title = "Generate Blogs",
                    page_icon = "πŸ€–",
                    layout = "centered",
                    initial_sidebar_state = "collapsed")

st.header("Generate Blogs πŸ€–")

input_text = st.text_input("Enter the Blog Topic")

# Creating 2 more columns for additional 2 fields
col1, col2 = st.columns([5,5])

with col1:
    no_words = st.text_input("No of words")

with col2:
    blog_style=st.selectbox("Writing the blog for",
                            ("Researchers","Data Scientist","Common People"),index=0)

submit = st.button("Generate")

# Final Response
if submit:
    st.write(getLLamaResponse(input_text,no_words,blog_style))