# importing libraries import streamlit as st import google.generativeai as genai from dotenv import load_dotenv from PIL import Image import os load_dotenv() # load all the environment variables from .env genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) # Function to load Gemini Pro Vision # In Gemini Pro, model takes it in a list model = genai.GenerativeModel('gemini-pro-vision') def get_gemini_response(input, image, prompt): response = model.generate_content([input, image[0], prompt]) return response.text def input_image_details(uploaded_file): # Check if a file has been uploaded if uploaded_file is not None: # Read the file into bytes bytes_data = uploaded_file.getvalue() image_parts = [ { "mime_type": uploaded_file.type, # Get the mime type of the uploaded file "data": bytes_data } ] return image_parts else: raise FileNotFoundError("No file uploaded") # streamlit setup st.set_page_config(layout="wide", page_title="Multilanguage Invoice Extractor") st.header("Gemini Application") input=st.text_input("Input Prompt: ",key="input") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) image="" if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image.", use_column_width=True) submit=st.button("Tell me about the image") input_prompt = """ You are an expert in understanding invoices. You will receive input images as invoices & you will have to answer questions based on the input image """ # if submit button is clicked if submit: image_data = input_image_details(uploaded_file) response = get_gemini_response(input_prompt, image_data, input) st.subheader("The Response is") st.write(response)