VisAt / app.py
Tanzeer's picture
Update app.py
c0f6a4b
raw
history blame
2.98 kB
import streamlit as st
import cv2
import numpy as np
import torch
from torchvision import transforms, models
from PIL import Image
from TranSalNet_Res import TranSalNet
from tqdm import tqdm
import torch.nn as nn
from utils.data_process import preprocess_img, postprocess_img
device = torch.device('cpu')
model = TranSalNet()
model.load_state_dict(torch.load('pretrained_models/TranSalNet_Res.pth', map_location=torch.device('cpu')))
model.to(device)
model.eval()
def count_and_label_red_patches(heatmap, threshold=200):
red_mask = heatmap[:, :, 2] > threshold
_, labels, stats, _ = cv2.connectedComponentsWithStats(red_mask.astype(np.uint8), connectivity=8)
num_red_patches = labels.max()
for i in range(1, num_red_patches + 1):
patch_mask = (labels == i)
patch_centroid_x, patch_centroid_y = int(stats[i, cv2.CC_STAT_LEFT] + stats[i, cv2.CC_STAT_WIDTH] / 2), int(stats[i, cv2.CC_STAT_TOP] + stats[i, cv2.CC_STAT_HEIGHT] / 2)
cv2.putText(heatmap, str(i), (patch_centroid_x, patch_centroid_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
return heatmap, num_red_patches
st.title('Saliency Detection App')
st.write('Upload an image for saliency detection:')
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_image:
image = Image.open(uploaded_image)
st.image(image, caption='Uploaded Image', use_column_width=True)
if st.button('Detect Saliency'):
img = image.resize((384, 288))
img = np.array(img) / 255.
img = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0)
img = torch.from_numpy(img)
img = img.type(torch.FloatTensor).to(device)
pred_saliency = model(img).squeeze().detach().numpy()
heatmap = (pred_saliency * 255).astype(np.uint8)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) # Use a blue colormap (JET)
heatmap = cv2.resize(heatmap, (image.width, image.height))
heatmap, num_red_patches = count_and_label_red_patches(heatmap)
enhanced_image = np.array(image)
b, g, r = cv2.split(enhanced_image)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
b_enhanced = clahe.apply(b)
enhanced_image = cv2.merge((b_enhanced, g, r))
alpha = 0.7
blended_img = cv2.addWeighted(enhanced_image, 1 - alpha, heatmap, alpha, 0)
st.image(heatmap, caption='Enhanced Saliency Heatmap', use_column_width=True, channels='BGR')
st.image(enhanced_image, caption='Enhanced Blue Image', use_column_width=True, channels='BGR')
st.image(blended_img, caption=f'Blended Image with {num_red_patches} Red Patches', use_column_width=True, channels='BGR')
# Create a dir with name example to save
cv2.imwrite('example/result15.png', blended_img, [int(cv2.IMWRITE_JPEG_QUALITY), 200])
st.success('Saliency detection complete. Result saved as "example/result15.png".')