Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,9 @@ model.load_state_dict(torch.load('pretrained_models/TranSalNet_Res.pth', map_loc
|
|
14 |
model.to(device)
|
15 |
model.eval()
|
16 |
|
|
|
|
|
|
|
17 |
def count_and_label_red_patches(heatmap, threshold=200):
|
18 |
red_mask = heatmap[:, :, 2] > threshold
|
19 |
contours, _ = cv2.findContours(red_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
@@ -23,13 +26,7 @@ def count_and_label_red_patches(heatmap, threshold=200):
|
|
23 |
|
24 |
original_image = np.array(image)
|
25 |
|
26 |
-
#
|
27 |
-
M_largest = cv2.moments(contours[0])
|
28 |
-
if M_largest["m00"] != 0:
|
29 |
-
cX_largest = int(M_largest["m10"] / M_largest["m00"])
|
30 |
-
cY_largest = int(M_largest["m01"] / M_largest["m00"])
|
31 |
-
else:
|
32 |
-
cX_largest, cY_largest = 0, 0
|
33 |
|
34 |
for i, contour in enumerate(contours, start=1):
|
35 |
# Compute the centroid of the current contour
|
@@ -44,18 +41,24 @@ def count_and_label_red_patches(heatmap, threshold=200):
|
|
44 |
circle_color = (0, 0, 0) # Blue color
|
45 |
cv2.circle(original_image, (cX, cY), radius, circle_color, -1) # Draw blue circle
|
46 |
|
47 |
-
# Connect the current red spot to the red spot with the highest area
|
48 |
-
line_color = (0, 0, 0) # Red color
|
49 |
-
cv2.line(original_image, (cX, cY), (cX_largest, cY_largest), line_color, 2)
|
50 |
-
|
51 |
font = cv2.FONT_HERSHEY_SIMPLEX
|
52 |
font_scale = 1
|
53 |
font_color = (255, 255, 255)
|
54 |
line_type = cv2.LINE_AA
|
55 |
cv2.putText(original_image, str(i), (cX - 10, cY + 10), font, font_scale, font_color, 2, line_type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
return original_image, len(contours)
|
58 |
|
|
|
59 |
st.title('Saliency Detection App')
|
60 |
st.write('Upload an image for saliency detection:')
|
61 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
@@ -95,6 +98,6 @@ if uploaded_image:
|
|
95 |
|
96 |
st.image(blended_img, caption='Blended Image', use_column_width=True, channels='BGR')
|
97 |
|
98 |
-
# Create a dir with name example to save
|
99 |
cv2.imwrite('example/result15.png', blended_img, [int(cv2.IMWRITE_JPEG_QUALITY), 200])
|
100 |
st.success('Saliency detection complete. Result saved as "example/result15.png".')
|
|
|
14 |
model.to(device)
|
15 |
model.eval()
|
16 |
|
17 |
+
import cv2
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
def count_and_label_red_patches(heatmap, threshold=200):
|
21 |
red_mask = heatmap[:, :, 2] > threshold
|
22 |
contours, _ = cv2.findContours(red_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
26 |
|
27 |
original_image = np.array(image)
|
28 |
|
29 |
+
centroid_list = [] # List to store the centroids of the contours in order
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
for i, contour in enumerate(contours, start=1):
|
32 |
# Compute the centroid of the current contour
|
|
|
41 |
circle_color = (0, 0, 0) # Blue color
|
42 |
cv2.circle(original_image, (cX, cY), radius, circle_color, -1) # Draw blue circle
|
43 |
|
|
|
|
|
|
|
|
|
44 |
font = cv2.FONT_HERSHEY_SIMPLEX
|
45 |
font_scale = 1
|
46 |
font_color = (255, 255, 255)
|
47 |
line_type = cv2.LINE_AA
|
48 |
cv2.putText(original_image, str(i), (cX - 10, cY + 10), font, font_scale, font_color, 2, line_type)
|
49 |
+
|
50 |
+
centroid_list.append((cX, cY)) # Add the centroid to the list
|
51 |
+
|
52 |
+
# Connect the red spots in the desired order
|
53 |
+
for i in range(len(centroid_list) - 1):
|
54 |
+
start_point = centroid_list[i]
|
55 |
+
end_point = centroid_list[i + 1]
|
56 |
+
line_color = (0, 0, 0) # Red color
|
57 |
+
cv2.line(original_image, start_point, end_point, line_color, 2)
|
58 |
|
59 |
return original_image, len(contours)
|
60 |
|
61 |
+
|
62 |
st.title('Saliency Detection App')
|
63 |
st.write('Upload an image for saliency detection:')
|
64 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
98 |
|
99 |
st.image(blended_img, caption='Blended Image', use_column_width=True, channels='BGR')
|
100 |
|
101 |
+
# Create a dir with the name example to save
|
102 |
cv2.imwrite('example/result15.png', blended_img, [int(cv2.IMWRITE_JPEG_QUALITY), 200])
|
103 |
st.success('Saliency detection complete. Result saved as "example/result15.png".')
|