Upload 15 files
Browse files- TranSalNet_Res.py +171 -0
- __pycache__/TranSalNet_Res.cpython-310.pyc +0 -0
- app.py +54 -0
- pretrained_models/.keep +1 -0
- pretrained_models/TranSalNet_Res.pth +3 -0
- pretrained_models/resnet50-0676ba61.pth +3 -0
- requirements.txt +0 -0
- utils/TransformerEncoder.py +137 -0
- utils/__pycache__/TransformerEncoder.cpython-310.pyc +0 -0
- utils/__pycache__/data_process.cpython-310.pyc +0 -0
- utils/__pycache__/resnet.cpython-310.pyc +0 -0
- utils/data_process.py +116 -0
- utils/densenet.py +287 -0
- utils/loss_function.py +69 -0
- utils/resnet.py +419 -0
TranSalNet_Res.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from torch.utils.data import Dataset, DataLoader
|
6 |
+
from skimage import io, transform
|
7 |
+
from PIL import Image
|
8 |
+
import torch.nn as nn
|
9 |
+
from torchvision import transforms, utils, models
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import utils.resnet as resnet
|
12 |
+
|
13 |
+
from utils.TransformerEncoder import Encoder
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
cfg1 = {
|
18 |
+
"hidden_size" : 768,
|
19 |
+
"mlp_dim" : 768*4,
|
20 |
+
"num_heads" : 12,
|
21 |
+
"num_layers" : 2,
|
22 |
+
"attention_dropout_rate" : 0,
|
23 |
+
"dropout_rate" : 0.0,
|
24 |
+
}
|
25 |
+
|
26 |
+
cfg2 = {
|
27 |
+
"hidden_size" : 768,
|
28 |
+
"mlp_dim" : 768*4,
|
29 |
+
"num_heads" : 12,
|
30 |
+
"num_layers" : 2,
|
31 |
+
"attention_dropout_rate" : 0,
|
32 |
+
"dropout_rate" : 0.0,
|
33 |
+
}
|
34 |
+
|
35 |
+
cfg3 = {
|
36 |
+
"hidden_size" : 512,
|
37 |
+
"mlp_dim" : 512*4,
|
38 |
+
"num_heads" : 8,
|
39 |
+
"num_layers" : 2,
|
40 |
+
"attention_dropout_rate" : 0,
|
41 |
+
"dropout_rate" : 0.0,
|
42 |
+
}
|
43 |
+
|
44 |
+
|
45 |
+
class TranSalNet(nn.Module):
|
46 |
+
|
47 |
+
def __init__(self):
|
48 |
+
super(TranSalNet, self).__init__()
|
49 |
+
self.encoder = _Encoder()
|
50 |
+
self.decoder = _Decoder()
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
x = self.encoder(x)
|
54 |
+
x = self.decoder(x)
|
55 |
+
return x
|
56 |
+
|
57 |
+
|
58 |
+
class _Encoder(nn.Module):
|
59 |
+
def __init__(self):
|
60 |
+
super(_Encoder, self).__init__()
|
61 |
+
base_model = resnet.resnet50(pretrained=True)
|
62 |
+
base_layers = list(base_model.children())[:8]
|
63 |
+
self.encoder = nn.ModuleList(base_layers).eval()
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
outputs = []
|
67 |
+
for ii,layer in enumerate(self.encoder):
|
68 |
+
x = layer(x)
|
69 |
+
if ii in {5,6,7}:
|
70 |
+
outputs.append(x)
|
71 |
+
return outputs
|
72 |
+
|
73 |
+
|
74 |
+
class _Decoder(nn.Module):
|
75 |
+
|
76 |
+
def __init__(self):
|
77 |
+
super(_Decoder, self).__init__()
|
78 |
+
self.conv1 = nn.Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
79 |
+
self.conv2 = nn.Conv2d(768, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
80 |
+
self.conv3 = nn.Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
81 |
+
self.conv4 = nn.Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
82 |
+
self.conv5 = nn.Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
83 |
+
self.conv6 = nn.Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
84 |
+
self.conv7 = nn.Conv2d(32, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
85 |
+
|
86 |
+
self.batchnorm1 = nn.BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
87 |
+
self.batchnorm2 = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
88 |
+
self.batchnorm3 = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
89 |
+
self.batchnorm4 = nn.BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
90 |
+
self.batchnorm5 = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
91 |
+
self.batchnorm6 = nn.BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
92 |
+
|
93 |
+
self.TransEncoder1 = TransEncoder(in_channels=2048, spatial_size=9*12, cfg=cfg1)
|
94 |
+
self.TransEncoder2 = TransEncoder(in_channels=1024, spatial_size=18*24, cfg=cfg2)
|
95 |
+
self.TransEncoder3 = TransEncoder(in_channels=512, spatial_size=36*48, cfg=cfg3)
|
96 |
+
|
97 |
+
self.add = torch.add
|
98 |
+
self.relu = nn.ReLU(True)
|
99 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
100 |
+
self.sigmoid = nn.Sigmoid()
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
x3, x4, x5 = x
|
104 |
+
|
105 |
+
x5 = self.TransEncoder1(x5)
|
106 |
+
x5 = self.conv1(x5)
|
107 |
+
x5 = self.batchnorm1(x5)
|
108 |
+
x5 = self.relu(x5)
|
109 |
+
x5 = self.upsample(x5)
|
110 |
+
|
111 |
+
x4_a = self.TransEncoder2(x4)
|
112 |
+
x4 = x5 * x4_a
|
113 |
+
x4 = self.relu(x4)
|
114 |
+
x4 = self.conv2(x4)
|
115 |
+
x4 = self.batchnorm2(x4)
|
116 |
+
x4 = self.relu(x4)
|
117 |
+
x4 = self.upsample(x4)
|
118 |
+
|
119 |
+
x3_a = self.TransEncoder3(x3)
|
120 |
+
x3 = x4 * x3_a
|
121 |
+
x3 = self.relu(x3)
|
122 |
+
x3 = self.conv3(x3)
|
123 |
+
x3 = self.batchnorm3(x3)
|
124 |
+
x3 = self.relu(x3)
|
125 |
+
x3 = self.upsample(x3)
|
126 |
+
|
127 |
+
x2 = self.conv4(x3)
|
128 |
+
x2 = self.batchnorm4(x2)
|
129 |
+
x2 = self.relu(x2)
|
130 |
+
x2 = self.upsample(x2)
|
131 |
+
x2 = self.conv5(x2)
|
132 |
+
x2 = self.batchnorm5(x2)
|
133 |
+
x2 = self.relu(x2)
|
134 |
+
|
135 |
+
x1 = self.upsample(x2)
|
136 |
+
x1 = self.conv6(x1)
|
137 |
+
x1 = self.batchnorm6(x1)
|
138 |
+
x1 = self.relu(x1)
|
139 |
+
x1 = self.conv7(x1)
|
140 |
+
x = self.sigmoid(x1)
|
141 |
+
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TransEncoder(nn.Module):
|
146 |
+
|
147 |
+
def __init__(self, in_channels, spatial_size, cfg):
|
148 |
+
super(TransEncoder, self).__init__()
|
149 |
+
|
150 |
+
self.patch_embeddings = nn.Conv2d(in_channels=in_channels,
|
151 |
+
out_channels=cfg['hidden_size'],
|
152 |
+
kernel_size=1,
|
153 |
+
stride=1)
|
154 |
+
self.position_embeddings = nn.Parameter(torch.zeros(1, spatial_size, cfg['hidden_size']))
|
155 |
+
|
156 |
+
self.transformer_encoder = Encoder(cfg)
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
a, b = x.shape[2], x.shape[3]
|
160 |
+
x = self.patch_embeddings(x)
|
161 |
+
x = x.flatten(2)
|
162 |
+
x = x.transpose(-1, -2)
|
163 |
+
|
164 |
+
embeddings = x + self.position_embeddings
|
165 |
+
x = self.transformer_encoder(embeddings)
|
166 |
+
B, n_patch, hidden = x.shape
|
167 |
+
x = x.permute(0, 2, 1)
|
168 |
+
x = x.contiguous().view(B, hidden, a, b)
|
169 |
+
|
170 |
+
return x
|
171 |
+
|
__pycache__/TranSalNet_Res.cpython-310.pyc
ADDED
Binary file (4.72 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
from torchvision import transforms
|
7 |
+
from TranSalNet_Res import TranSalNet # Make sure TranSalNet is accessible from your Streamlit app
|
8 |
+
|
9 |
+
# Load the model and set the device
|
10 |
+
model = TranSalNet()
|
11 |
+
model.load_state_dict(torch.load('pretrained_models/TranSalNet_Res.pth', map_location=torch.device('cpu')))
|
12 |
+
model.eval() # Set the model to evaluation mode
|
13 |
+
device = torch.device('cpu')
|
14 |
+
model.to(device)
|
15 |
+
|
16 |
+
# Define Streamlit app
|
17 |
+
st.title('Saliency Detection App')
|
18 |
+
st.write('Upload an image for saliency detection:')
|
19 |
+
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
20 |
+
|
21 |
+
if uploaded_image:
|
22 |
+
image = Image.open(uploaded_image)
|
23 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
24 |
+
|
25 |
+
# Check if the user clicks a button
|
26 |
+
if st.button('Detect Saliency'):
|
27 |
+
# Preprocess the image
|
28 |
+
img = image.resize((384, 288))
|
29 |
+
img = np.array(img) / 255.
|
30 |
+
img = np.transpose(img, (2, 0, 1))
|
31 |
+
img = torch.from_numpy(img).unsqueeze(0).float()
|
32 |
+
img = img.to(device)
|
33 |
+
|
34 |
+
# Get saliency prediction
|
35 |
+
with torch.no_grad():
|
36 |
+
pred_saliency = model(img)
|
37 |
+
|
38 |
+
# Convert the result back to a PIL image
|
39 |
+
toPIL = transforms.ToPILImage()
|
40 |
+
pic = toPIL(pred_saliency.squeeze())
|
41 |
+
|
42 |
+
# Colorize the grayscale prediction
|
43 |
+
colorized_img = cv2.applyColorMap(np.uint8(pic), cv2.COLORMAP_JET)
|
44 |
+
|
45 |
+
# Ensure the colorized image has the same dimensions as the original image
|
46 |
+
original_img = np.array(image)
|
47 |
+
colorized_img = cv2.resize(colorized_img, (original_img.shape[1], original_img.shape[0]))
|
48 |
+
|
49 |
+
# You can add more post-processing here if needed
|
50 |
+
|
51 |
+
# Display the final result
|
52 |
+
st.image(colorized_img, caption='Colorized Saliency Map', use_column_width=True)
|
53 |
+
|
54 |
+
st.write('Finished!')
|
pretrained_models/.keep
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
pretrained_models/TranSalNet_Res.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3853e24e1e0bf892bdc321dcf269516a58450f9af2d3ca0b620272d6c81fe5c7
|
3 |
+
size 290451767
|
pretrained_models/resnet50-0676ba61.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0676ba61b6795bbe1773cffd859882e5e297624d384b6993f7c9e683e722fb8a
|
3 |
+
size 102530333
|
requirements.txt
ADDED
Binary file (3.06 kB). View file
|
|
utils/TransformerEncoder.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
|
3 |
+
from __future__ import absolute_import
|
4 |
+
from __future__ import division
|
5 |
+
from __future__ import print_function
|
6 |
+
|
7 |
+
import copy
|
8 |
+
import logging
|
9 |
+
import math
|
10 |
+
|
11 |
+
from os.path import join as pjoin
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
from torch.nn import CrossEntropyLoss, Dropout, Softmax, Linear, Conv2d, LayerNorm
|
18 |
+
from torch.nn.modules.utils import _pair
|
19 |
+
from scipy import ndimage
|
20 |
+
|
21 |
+
|
22 |
+
ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu}
|
23 |
+
|
24 |
+
|
25 |
+
class Attention(nn.Module):
|
26 |
+
def __init__(self, config):
|
27 |
+
super(Attention, self).__init__()
|
28 |
+
self.num_attention_heads = config["num_heads"] # 12
|
29 |
+
self.attention_head_size = int(config['hidden_size'] / self.num_attention_heads) # 42
|
30 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size # 12*42=504
|
31 |
+
|
32 |
+
self.query = Linear(config['hidden_size'], self.all_head_size) # (512, 504)
|
33 |
+
self.key = Linear(config['hidden_size'], self.all_head_size)
|
34 |
+
self.value = Linear(config['hidden_size'], self.all_head_size)
|
35 |
+
|
36 |
+
# self.out = Linear(config['hidden_size'], config['hidden_size'])
|
37 |
+
self.out = Linear(self.all_head_size, config['hidden_size'])
|
38 |
+
self.attn_dropout = Dropout(config["attention_dropout_rate"])
|
39 |
+
self.proj_dropout = Dropout(config["attention_dropout_rate"])
|
40 |
+
|
41 |
+
self.softmax = Softmax(dim=-1)
|
42 |
+
|
43 |
+
def transpose_for_scores(self, x):
|
44 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
45 |
+
x = x.view(*new_x_shape)
|
46 |
+
return x.permute(0, 2, 1, 3)
|
47 |
+
|
48 |
+
def forward(self, hidden_states):
|
49 |
+
|
50 |
+
mixed_query_layer = self.query(hidden_states)
|
51 |
+
mixed_key_layer = self.key(hidden_states)
|
52 |
+
mixed_value_layer = self.value(hidden_states)
|
53 |
+
|
54 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
55 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
56 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
57 |
+
|
58 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
59 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
60 |
+
attention_probs = self.softmax(attention_scores)
|
61 |
+
attention_probs = self.attn_dropout(attention_probs)
|
62 |
+
|
63 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
64 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
65 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
66 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
67 |
+
attention_output = self.out(context_layer)
|
68 |
+
attention_output = self.proj_dropout(attention_output)
|
69 |
+
return attention_output
|
70 |
+
|
71 |
+
|
72 |
+
class Mlp(nn.Module):
|
73 |
+
def __init__(self, config):
|
74 |
+
super(Mlp, self).__init__()
|
75 |
+
self.fc1 = Linear(config['hidden_size'], config["mlp_dim"])
|
76 |
+
self.fc2 = Linear(config["mlp_dim"], config['hidden_size'])
|
77 |
+
self.act_fn = ACT2FN["gelu"]
|
78 |
+
self.dropout = Dropout(config["dropout_rate"])
|
79 |
+
self._init_weights()
|
80 |
+
|
81 |
+
def _init_weights(self):
|
82 |
+
nn.init.xavier_uniform_(self.fc1.weight)
|
83 |
+
nn.init.xavier_uniform_(self.fc2.weight)
|
84 |
+
nn.init.normal_(self.fc1.bias, std=1e-6)
|
85 |
+
nn.init.normal_(self.fc2.bias, std=1e-6)
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
x = self.fc1(x)
|
89 |
+
x = self.act_fn(x)
|
90 |
+
x = self.dropout(x)
|
91 |
+
x = self.fc2(x)
|
92 |
+
x = self.dropout(x)
|
93 |
+
return x
|
94 |
+
|
95 |
+
|
96 |
+
class Block(nn.Module):
|
97 |
+
def __init__(self, config):
|
98 |
+
super(Block, self).__init__()
|
99 |
+
self.flag = config['num_heads']
|
100 |
+
self.hidden_size = config['hidden_size']
|
101 |
+
self.ffn_norm = LayerNorm(config['hidden_size'], eps=1e-6)
|
102 |
+
self.ffn = Mlp(config)
|
103 |
+
self.attn = Attention(config)
|
104 |
+
self.attention_norm = LayerNorm(config['hidden_size'], eps=1e-6)
|
105 |
+
|
106 |
+
def forward(self, x):
|
107 |
+
h = x
|
108 |
+
|
109 |
+
x = self.attention_norm(x)
|
110 |
+
x = self.attn(x)
|
111 |
+
x = x + h
|
112 |
+
|
113 |
+
h = x
|
114 |
+
x = self.ffn_norm(x)
|
115 |
+
x = self.ffn(x)
|
116 |
+
x = x + h
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
class Encoder(nn.Module):
|
121 |
+
def __init__(self, config):
|
122 |
+
super(Encoder, self).__init__()
|
123 |
+
|
124 |
+
self.layer = nn.ModuleList()
|
125 |
+
self.encoder_norm = LayerNorm(config['hidden_size'], eps=1e-6)
|
126 |
+
for _ in range(config["num_layers"]):
|
127 |
+
layer = Block(config)
|
128 |
+
self.layer.append(copy.deepcopy(layer))
|
129 |
+
|
130 |
+
def forward(self, hidden_states):
|
131 |
+
for layer_block in self.layer:
|
132 |
+
hidden_states = layer_block(hidden_states)
|
133 |
+
encoded = self.encoder_norm(hidden_states)
|
134 |
+
|
135 |
+
return encoded
|
136 |
+
|
137 |
+
|
utils/__pycache__/TransformerEncoder.cpython-310.pyc
ADDED
Binary file (4.54 kB). View file
|
|
utils/__pycache__/data_process.cpython-310.pyc
ADDED
Binary file (3.05 kB). View file
|
|
utils/__pycache__/resnet.cpython-310.pyc
ADDED
Binary file (12.1 kB). View file
|
|
utils/data_process.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
from torch.utils.data import Dataset, DataLoader
|
7 |
+
|
8 |
+
|
9 |
+
def preprocess_img(img_dir, channels=3):
|
10 |
+
|
11 |
+
if channels == 1:
|
12 |
+
img = cv2.imread(img_dir, 0)
|
13 |
+
elif channels == 3:
|
14 |
+
img = cv2.imread(img_dir)
|
15 |
+
|
16 |
+
shape_r = 288
|
17 |
+
shape_c = 384
|
18 |
+
img_padded = np.ones((shape_r, shape_c, channels), dtype=np.uint8)
|
19 |
+
if channels == 1:
|
20 |
+
img_padded = np.zeros((shape_r, shape_c), dtype=np.uint8)
|
21 |
+
original_shape = img.shape
|
22 |
+
rows_rate = original_shape[0] / shape_r
|
23 |
+
cols_rate = original_shape[1] / shape_c
|
24 |
+
if rows_rate > cols_rate:
|
25 |
+
new_cols = (original_shape[1] * shape_r) // original_shape[0]
|
26 |
+
img = cv2.resize(img, (new_cols, shape_r))
|
27 |
+
if new_cols > shape_c:
|
28 |
+
new_cols = shape_c
|
29 |
+
img_padded[:,
|
30 |
+
((img_padded.shape[1] - new_cols) // 2):((img_padded.shape[1] - new_cols) // 2 + new_cols)] = img
|
31 |
+
else:
|
32 |
+
new_rows = (original_shape[0] * shape_c) // original_shape[1]
|
33 |
+
img = cv2.resize(img, (shape_c, new_rows))
|
34 |
+
|
35 |
+
if new_rows > shape_r:
|
36 |
+
new_rows = shape_r
|
37 |
+
img_padded[((img_padded.shape[0] - new_rows) // 2):((img_padded.shape[0] - new_rows) // 2 + new_rows),
|
38 |
+
:] = img
|
39 |
+
|
40 |
+
return img_padded
|
41 |
+
|
42 |
+
|
43 |
+
def postprocess_img(pred, org_dir):
|
44 |
+
pred = np.array(pred)
|
45 |
+
org = cv2.imread(org_dir, 0)
|
46 |
+
shape_r = org.shape[0]
|
47 |
+
shape_c = org.shape[1]
|
48 |
+
predictions_shape = pred.shape
|
49 |
+
|
50 |
+
rows_rate = shape_r / predictions_shape[0]
|
51 |
+
cols_rate = shape_c / predictions_shape[1]
|
52 |
+
|
53 |
+
if rows_rate > cols_rate:
|
54 |
+
new_cols = (predictions_shape[1] * shape_r) // predictions_shape[0]
|
55 |
+
pred = cv2.resize(pred, (new_cols, shape_r))
|
56 |
+
img = pred[:, ((pred.shape[1] - shape_c) // 2):((pred.shape[1] - shape_c) // 2 + shape_c)]
|
57 |
+
else:
|
58 |
+
new_rows = (predictions_shape[0] * shape_c) // predictions_shape[1]
|
59 |
+
pred = cv2.resize(pred, (shape_c, new_rows))
|
60 |
+
img = pred[((pred.shape[0] - shape_r) // 2):((pred.shape[0] - shape_r) // 2 + shape_r), :]
|
61 |
+
|
62 |
+
return img
|
63 |
+
|
64 |
+
|
65 |
+
class MyDataset(Dataset):
|
66 |
+
"""Load dataset."""
|
67 |
+
|
68 |
+
def __init__(self, ids, stimuli_dir, saliency_dir, fixation_dir, transform=None):
|
69 |
+
"""
|
70 |
+
Args:
|
71 |
+
csv_file (string): Path to the csv file with annotations.
|
72 |
+
root_dir (string): Directory with all the images.
|
73 |
+
transform (callable, optional): Optional transform to be applied
|
74 |
+
on a sample.
|
75 |
+
"""
|
76 |
+
self.ids = ids
|
77 |
+
self.stimuli_dir = stimuli_dir
|
78 |
+
self.saliency_dir = saliency_dir
|
79 |
+
self.fixation_dir = fixation_dir
|
80 |
+
self.transform = transform
|
81 |
+
|
82 |
+
def __len__(self):
|
83 |
+
return len(self.ids)
|
84 |
+
|
85 |
+
def __getitem__(self, idx):
|
86 |
+
if torch.is_tensor(idx):
|
87 |
+
idx = idx.tolist()
|
88 |
+
|
89 |
+
im_path = self.stimuli_dir + self.ids.iloc[idx, 0]
|
90 |
+
image = Image.open(im_path).convert('RGB')
|
91 |
+
img = np.array(image) / 255.
|
92 |
+
img = np.transpose(img, (2, 0, 1))
|
93 |
+
img = torch.from_numpy(img)
|
94 |
+
# if self.transform:
|
95 |
+
# img = self.transform(image)
|
96 |
+
|
97 |
+
smap_path = self.saliency_dir + self.ids.iloc[idx, 1]
|
98 |
+
saliency = Image.open(smap_path)
|
99 |
+
|
100 |
+
smap = np.expand_dims(np.array(saliency) / 255., axis=0)
|
101 |
+
smap = torch.from_numpy(smap)
|
102 |
+
|
103 |
+
fmap_path = self.fixation_dir + self.ids.iloc[idx, 2]
|
104 |
+
fixation = Image.open(fmap_path)
|
105 |
+
|
106 |
+
fmap = np.expand_dims(np.array(fixation) / 255., axis=0)
|
107 |
+
fmap = torch.from_numpy(fmap)
|
108 |
+
|
109 |
+
sample = {'image': img, 'saliency': smap, 'fixation': fmap}
|
110 |
+
|
111 |
+
return sample
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
utils/densenet.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.utils.checkpoint as cp
|
6 |
+
from collections import OrderedDict
|
7 |
+
# from .utils import load_state_dict_from_url
|
8 |
+
from torch import Tensor
|
9 |
+
from torch.jit.annotations import List
|
10 |
+
|
11 |
+
|
12 |
+
__all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161']
|
13 |
+
|
14 |
+
model_urls = {
|
15 |
+
'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
|
16 |
+
'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
|
17 |
+
'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
|
18 |
+
'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
class _DenseLayer(nn.Module):
|
23 |
+
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, memory_efficient=False):
|
24 |
+
super(_DenseLayer, self).__init__()
|
25 |
+
self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
|
26 |
+
self.add_module('relu1', nn.ReLU(inplace=True)),
|
27 |
+
self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
|
28 |
+
growth_rate, kernel_size=1, stride=1,
|
29 |
+
bias=False)),
|
30 |
+
self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
|
31 |
+
self.add_module('relu2', nn.ReLU(inplace=True)),
|
32 |
+
self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
|
33 |
+
kernel_size=3, stride=1, padding=1,
|
34 |
+
bias=False)),
|
35 |
+
self.drop_rate = float(drop_rate)
|
36 |
+
self.memory_efficient = memory_efficient
|
37 |
+
|
38 |
+
def bn_function(self, inputs):
|
39 |
+
# type: (List[Tensor]) -> Tensor
|
40 |
+
concated_features = torch.cat(inputs, 1)
|
41 |
+
bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features))) # noqa: T484
|
42 |
+
return bottleneck_output
|
43 |
+
|
44 |
+
# todo: rewrite when torchscript supports any
|
45 |
+
def any_requires_grad(self, input):
|
46 |
+
# type: (List[Tensor]) -> bool
|
47 |
+
for tensor in input:
|
48 |
+
if tensor.requires_grad:
|
49 |
+
return True
|
50 |
+
return False
|
51 |
+
|
52 |
+
@torch.jit.unused # noqa: T484
|
53 |
+
def call_checkpoint_bottleneck(self, input):
|
54 |
+
# type: (List[Tensor]) -> Tensor
|
55 |
+
def closure(*inputs):
|
56 |
+
return self.bn_function(inputs)
|
57 |
+
|
58 |
+
return cp.checkpoint(closure, *input)
|
59 |
+
|
60 |
+
@torch.jit._overload_method # noqa: F811
|
61 |
+
def forward(self, input):
|
62 |
+
# type: (List[Tensor]) -> (Tensor)
|
63 |
+
pass
|
64 |
+
|
65 |
+
@torch.jit._overload_method # noqa: F811
|
66 |
+
def forward(self, input):
|
67 |
+
# type: (Tensor) -> (Tensor)
|
68 |
+
pass
|
69 |
+
|
70 |
+
# torchscript does not yet support *args, so we overload method
|
71 |
+
# allowing it to take either a List[Tensor] or single Tensor
|
72 |
+
def forward(self, input): # noqa: F811
|
73 |
+
if isinstance(input, Tensor):
|
74 |
+
prev_features = [input]
|
75 |
+
else:
|
76 |
+
prev_features = input
|
77 |
+
|
78 |
+
if self.memory_efficient and self.any_requires_grad(prev_features):
|
79 |
+
if torch.jit.is_scripting():
|
80 |
+
raise Exception("Memory Efficient not supported in JIT")
|
81 |
+
|
82 |
+
bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
|
83 |
+
else:
|
84 |
+
bottleneck_output = self.bn_function(prev_features)
|
85 |
+
|
86 |
+
new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))
|
87 |
+
if self.drop_rate > 0:
|
88 |
+
new_features = F.dropout(new_features, p=self.drop_rate,
|
89 |
+
training=self.training)
|
90 |
+
return new_features
|
91 |
+
|
92 |
+
|
93 |
+
class _DenseBlock(nn.ModuleDict):
|
94 |
+
_version = 2
|
95 |
+
|
96 |
+
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate, memory_efficient=False):
|
97 |
+
super(_DenseBlock, self).__init__()
|
98 |
+
for i in range(num_layers):
|
99 |
+
layer = _DenseLayer(
|
100 |
+
num_input_features + i * growth_rate,
|
101 |
+
growth_rate=growth_rate,
|
102 |
+
bn_size=bn_size,
|
103 |
+
drop_rate=drop_rate,
|
104 |
+
memory_efficient=memory_efficient,
|
105 |
+
)
|
106 |
+
self.add_module('denselayer%d' % (i + 1), layer)
|
107 |
+
|
108 |
+
def forward(self, init_features):
|
109 |
+
features = [init_features]
|
110 |
+
for name, layer in self.items():
|
111 |
+
new_features = layer(features)
|
112 |
+
features.append(new_features)
|
113 |
+
return torch.cat(features, 1)
|
114 |
+
|
115 |
+
|
116 |
+
class _Transition(nn.Sequential):
|
117 |
+
def __init__(self, num_input_features, num_output_features):
|
118 |
+
super(_Transition, self).__init__()
|
119 |
+
self.add_module('norm', nn.BatchNorm2d(num_input_features))
|
120 |
+
self.add_module('relu', nn.ReLU(inplace=True))
|
121 |
+
self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
|
122 |
+
kernel_size=1, stride=1, bias=False))
|
123 |
+
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
|
124 |
+
|
125 |
+
|
126 |
+
class DenseNet(nn.Module):
|
127 |
+
r"""Densenet-BC model class, based on
|
128 |
+
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
|
129 |
+
|
130 |
+
Args:
|
131 |
+
growth_rate (int) - how many filters to add each layer (`k` in paper)
|
132 |
+
block_config (list of 4 ints) - how many layers in each pooling block
|
133 |
+
num_init_features (int) - the number of filters to learn in the first convolution layer
|
134 |
+
bn_size (int) - multiplicative factor for number of bottle neck layers
|
135 |
+
(i.e. bn_size * k features in the bottleneck layer)
|
136 |
+
drop_rate (float) - dropout rate after each dense layer
|
137 |
+
num_classes (int) - number of classification classes
|
138 |
+
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
|
139 |
+
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
|
143 |
+
num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000, memory_efficient=False):
|
144 |
+
|
145 |
+
super(DenseNet, self).__init__()
|
146 |
+
|
147 |
+
# First convolution
|
148 |
+
self.features = nn.Sequential(OrderedDict([
|
149 |
+
('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2,
|
150 |
+
padding=3, bias=False)),
|
151 |
+
('norm0', nn.BatchNorm2d(num_init_features)),
|
152 |
+
('relu0', nn.ReLU(inplace=True)),
|
153 |
+
('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
|
154 |
+
]))
|
155 |
+
|
156 |
+
# Each denseblock
|
157 |
+
num_features = num_init_features
|
158 |
+
for i, num_layers in enumerate(block_config):
|
159 |
+
block = _DenseBlock(
|
160 |
+
num_layers=num_layers,
|
161 |
+
num_input_features=num_features,
|
162 |
+
bn_size=bn_size,
|
163 |
+
growth_rate=growth_rate,
|
164 |
+
drop_rate=drop_rate,
|
165 |
+
memory_efficient=memory_efficient
|
166 |
+
)
|
167 |
+
self.features.add_module('denseblock%d' % (i + 1), block)
|
168 |
+
num_features = num_features + num_layers * growth_rate
|
169 |
+
if i != len(block_config) - 1:
|
170 |
+
trans = _Transition(num_input_features=num_features,
|
171 |
+
num_output_features=num_features // 2)
|
172 |
+
self.features.add_module('transition%d' % (i + 1), trans)
|
173 |
+
num_features = num_features // 2
|
174 |
+
|
175 |
+
# Final batch norm
|
176 |
+
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
|
177 |
+
|
178 |
+
# Linear layer
|
179 |
+
self.classifier = nn.Linear(num_features, num_classes)
|
180 |
+
|
181 |
+
# Official init from torch repo.
|
182 |
+
for m in self.modules():
|
183 |
+
if isinstance(m, nn.Conv2d):
|
184 |
+
nn.init.kaiming_normal_(m.weight)
|
185 |
+
elif isinstance(m, nn.BatchNorm2d):
|
186 |
+
nn.init.constant_(m.weight, 1)
|
187 |
+
nn.init.constant_(m.bias, 0)
|
188 |
+
elif isinstance(m, nn.Linear):
|
189 |
+
nn.init.constant_(m.bias, 0)
|
190 |
+
|
191 |
+
def forward(self, x):
|
192 |
+
features = self.features(x)
|
193 |
+
out = F.relu(features, inplace=True)
|
194 |
+
out = F.adaptive_avg_pool2d(out, (1, 1))
|
195 |
+
out = torch.flatten(out, 1)
|
196 |
+
out = self.classifier(out)
|
197 |
+
return out
|
198 |
+
|
199 |
+
|
200 |
+
def _load_state_dict(model, model_url, progress, flag):
|
201 |
+
# '.'s are no longer allowed in module names, but previous _DenseLayer
|
202 |
+
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
|
203 |
+
# They are also in the checkpoints in model_urls. This pattern is used
|
204 |
+
# to find such keys.
|
205 |
+
pattern = re.compile(
|
206 |
+
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
|
207 |
+
if flag == "densenet161":
|
208 |
+
state_dict = torch.load(r'pretrained_models/densenet161-8d451a50.pth')
|
209 |
+
else:
|
210 |
+
state_dict = load_state_dict_from_url(model_url, progress=progress)
|
211 |
+
for key in list(state_dict.keys()):
|
212 |
+
res = pattern.match(key)
|
213 |
+
if res:
|
214 |
+
new_key = res.group(1) + res.group(2)
|
215 |
+
state_dict[new_key] = state_dict[key]
|
216 |
+
del state_dict[key]
|
217 |
+
model.load_state_dict(state_dict)
|
218 |
+
|
219 |
+
|
220 |
+
def _densenet(arch, growth_rate, block_config, num_init_features, pretrained, progress,
|
221 |
+
**kwargs):
|
222 |
+
model = DenseNet(growth_rate, block_config, num_init_features, **kwargs)
|
223 |
+
if pretrained:
|
224 |
+
if arch == 'densenet161':
|
225 |
+
_load_state_dict(model, model_urls[arch], progress, 'densenet161')
|
226 |
+
else:
|
227 |
+
_load_state_dict(model, model_urls[arch], progress, 0)
|
228 |
+
return model
|
229 |
+
|
230 |
+
|
231 |
+
def densenet121(pretrained=False, progress=True, **kwargs):
|
232 |
+
r"""Densenet-121 model from
|
233 |
+
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
|
234 |
+
|
235 |
+
Args:
|
236 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
237 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
238 |
+
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
|
239 |
+
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
|
240 |
+
"""
|
241 |
+
return _densenet('densenet121', 32, (6, 12, 24, 16), 64, pretrained, progress,
|
242 |
+
**kwargs)
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
def densenet161(pretrained=False, progress=True, **kwargs):
|
247 |
+
r"""Densenet-161 model from
|
248 |
+
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
|
249 |
+
|
250 |
+
Args:
|
251 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
252 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
253 |
+
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
|
254 |
+
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
|
255 |
+
"""
|
256 |
+
return _densenet('densenet161', 48, (6, 12, 36, 24), 96, pretrained, progress,
|
257 |
+
**kwargs)
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
def densenet169(pretrained=False, progress=True, **kwargs):
|
262 |
+
r"""Densenet-169 model from
|
263 |
+
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
|
264 |
+
|
265 |
+
Args:
|
266 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
267 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
268 |
+
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
|
269 |
+
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
|
270 |
+
"""
|
271 |
+
return _densenet('densenet169', 32, (6, 12, 32, 32), 64, pretrained, progress,
|
272 |
+
**kwargs)
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
def densenet201(pretrained=False, progress=True, **kwargs):
|
277 |
+
r"""Densenet-201 model from
|
278 |
+
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
|
279 |
+
|
280 |
+
Args:
|
281 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
282 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
283 |
+
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
|
284 |
+
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
|
285 |
+
"""
|
286 |
+
return _densenet('densenet201', 32, (6, 12, 48, 32), 64, pretrained, progress,
|
287 |
+
**kwargs)
|
utils/loss_function.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch as t
|
2 |
+
import torch.nn as nn
|
3 |
+
#import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
class SaliencyLoss(nn.Module):
|
7 |
+
def __init__(self):
|
8 |
+
super(SaliencyLoss, self).__init__()
|
9 |
+
|
10 |
+
def forward(self, preds, labels, loss_type='cc'):
|
11 |
+
losses = []
|
12 |
+
if loss_type == 'cc':
|
13 |
+
for i in range(labels.shape[0]): # labels.shape[0] is batch size
|
14 |
+
loss = loss_CC(preds[i],labels[i])
|
15 |
+
losses.append(loss)
|
16 |
+
|
17 |
+
elif loss_type == 'kldiv':
|
18 |
+
for i in range(labels.shape[0]):
|
19 |
+
loss = loss_KLdiv(preds[i],labels[i])
|
20 |
+
losses.append(loss)
|
21 |
+
|
22 |
+
elif loss_type == 'sim':
|
23 |
+
for i in range(labels.shape[0]):
|
24 |
+
loss = loss_similarity(preds[i],labels[i])
|
25 |
+
losses.append(loss)
|
26 |
+
|
27 |
+
elif loss_type == 'nss':
|
28 |
+
for i in range(labels.shape[0]):
|
29 |
+
loss = loss_NSS(preds[i],labels[i])
|
30 |
+
losses.append(loss)
|
31 |
+
|
32 |
+
return t.stack(losses).mean(dim=0, keepdim=True)
|
33 |
+
|
34 |
+
|
35 |
+
def loss_KLdiv(pred_map, gt_map):
|
36 |
+
eps = 2.2204e-16
|
37 |
+
pred_map = pred_map/t.sum(pred_map)
|
38 |
+
gt_map = gt_map/t.sum(gt_map)
|
39 |
+
div = t.sum(t.mul(gt_map, t.log(eps + t.div(gt_map,pred_map+eps))))
|
40 |
+
return div
|
41 |
+
|
42 |
+
|
43 |
+
def loss_CC(pred_map,gt_map):
|
44 |
+
gt_map_ = (gt_map - t.mean(gt_map))
|
45 |
+
pred_map_ = (pred_map - t.mean(pred_map))
|
46 |
+
cc = t.sum(t.mul(gt_map_,pred_map_))/t.sqrt(t.sum(t.mul(gt_map_,gt_map_))*t.sum(t.mul(pred_map_,pred_map_)))
|
47 |
+
return cc
|
48 |
+
|
49 |
+
|
50 |
+
def loss_similarity(pred_map,gt_map):
|
51 |
+
gt_map = (gt_map - t.min(gt_map))/(t.max(gt_map)-t.min(gt_map))
|
52 |
+
gt_map = gt_map/t.sum(gt_map)
|
53 |
+
|
54 |
+
pred_map = (pred_map - t.min(pred_map))/(t.max(pred_map)-t.min(pred_map))
|
55 |
+
pred_map = pred_map/t.sum(pred_map)
|
56 |
+
|
57 |
+
diff = t.min(gt_map,pred_map)
|
58 |
+
score = t.sum(diff)
|
59 |
+
|
60 |
+
return score
|
61 |
+
|
62 |
+
|
63 |
+
def loss_NSS(pred_map,fix_map):
|
64 |
+
'''ground truth here is fixation map'''
|
65 |
+
|
66 |
+
pred_map_ = (pred_map - t.mean(pred_map))/t.std(pred_map)
|
67 |
+
mask = fix_map.gt(0)
|
68 |
+
score = t.mean(t.masked_select(pred_map_, mask))
|
69 |
+
return score
|
utils/resnet.py
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Type, Any, Callable, Union, List, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch import Tensor
|
6 |
+
|
7 |
+
# from .._internally_replaced_utils import load_state_dict_from_url
|
8 |
+
# from ..utils import _log_api_usage_once
|
9 |
+
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
"ResNet",
|
13 |
+
"resnet18",
|
14 |
+
"resnet34",
|
15 |
+
"resnet50",
|
16 |
+
"resnet101",
|
17 |
+
"resnet152",
|
18 |
+
"resnext50_32x4d",
|
19 |
+
"resnext101_32x8d",
|
20 |
+
"wide_resnet50_2",
|
21 |
+
"wide_resnet101_2",
|
22 |
+
]
|
23 |
+
|
24 |
+
|
25 |
+
model_urls = {
|
26 |
+
"resnet18": "https://download.pytorch.org/models/resnet18-f37072fd.pth",
|
27 |
+
"resnet34": "https://download.pytorch.org/models/resnet34-b627a593.pth",
|
28 |
+
"resnet50": "https://download.pytorch.org/models/resnet50-0676ba61.pth",
|
29 |
+
"resnet101": "https://download.pytorch.org/models/resnet101-63fe2227.pth",
|
30 |
+
"resnet152": "https://download.pytorch.org/models/resnet152-394f9c45.pth",
|
31 |
+
"resnext50_32x4d": "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
|
32 |
+
"resnext101_32x8d": "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
|
33 |
+
"wide_resnet50_2": "https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
|
34 |
+
"wide_resnet101_2": "https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
|
39 |
+
"""3x3 convolution with padding"""
|
40 |
+
return nn.Conv2d(
|
41 |
+
in_planes,
|
42 |
+
out_planes,
|
43 |
+
kernel_size=3,
|
44 |
+
stride=stride,
|
45 |
+
padding=dilation,
|
46 |
+
groups=groups,
|
47 |
+
bias=False,
|
48 |
+
dilation=dilation,
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
|
53 |
+
"""1x1 convolution"""
|
54 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
55 |
+
|
56 |
+
|
57 |
+
class BasicBlock(nn.Module):
|
58 |
+
expansion: int = 1
|
59 |
+
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
inplanes: int,
|
63 |
+
planes: int,
|
64 |
+
stride: int = 1,
|
65 |
+
downsample: Optional[nn.Module] = None,
|
66 |
+
groups: int = 1,
|
67 |
+
base_width: int = 64,
|
68 |
+
dilation: int = 1,
|
69 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
70 |
+
) -> None:
|
71 |
+
super().__init__()
|
72 |
+
if norm_layer is None:
|
73 |
+
norm_layer = nn.BatchNorm2d
|
74 |
+
if groups != 1 or base_width != 64:
|
75 |
+
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
|
76 |
+
if dilation > 1:
|
77 |
+
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
78 |
+
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
79 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
80 |
+
self.bn1 = norm_layer(planes)
|
81 |
+
self.relu = nn.ReLU(inplace=True)
|
82 |
+
self.conv2 = conv3x3(planes, planes)
|
83 |
+
self.bn2 = norm_layer(planes)
|
84 |
+
self.downsample = downsample
|
85 |
+
self.stride = stride
|
86 |
+
|
87 |
+
def forward(self, x: Tensor) -> Tensor:
|
88 |
+
identity = x
|
89 |
+
|
90 |
+
out = self.conv1(x)
|
91 |
+
out = self.bn1(out)
|
92 |
+
out = self.relu(out)
|
93 |
+
|
94 |
+
out = self.conv2(out)
|
95 |
+
out = self.bn2(out)
|
96 |
+
|
97 |
+
if self.downsample is not None:
|
98 |
+
identity = self.downsample(x)
|
99 |
+
|
100 |
+
out += identity
|
101 |
+
out = self.relu(out)
|
102 |
+
|
103 |
+
return out
|
104 |
+
|
105 |
+
|
106 |
+
class Bottleneck(nn.Module):
|
107 |
+
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
|
108 |
+
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
|
109 |
+
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
|
110 |
+
# This variant is also known as ResNet V1.5 and improves accuracy according to
|
111 |
+
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
|
112 |
+
|
113 |
+
expansion: int = 4
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
inplanes: int,
|
118 |
+
planes: int,
|
119 |
+
stride: int = 1,
|
120 |
+
downsample: Optional[nn.Module] = None,
|
121 |
+
groups: int = 1,
|
122 |
+
base_width: int = 64,
|
123 |
+
dilation: int = 1,
|
124 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
125 |
+
) -> None:
|
126 |
+
super().__init__()
|
127 |
+
if norm_layer is None:
|
128 |
+
norm_layer = nn.BatchNorm2d
|
129 |
+
width = int(planes * (base_width / 64.0)) * groups
|
130 |
+
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
131 |
+
self.conv1 = conv1x1(inplanes, width)
|
132 |
+
self.bn1 = norm_layer(width)
|
133 |
+
self.conv2 = conv3x3(width, width, stride, groups, dilation)
|
134 |
+
self.bn2 = norm_layer(width)
|
135 |
+
self.conv3 = conv1x1(width, planes * self.expansion)
|
136 |
+
self.bn3 = norm_layer(planes * self.expansion)
|
137 |
+
self.relu = nn.ReLU(inplace=True)
|
138 |
+
self.downsample = downsample
|
139 |
+
self.stride = stride
|
140 |
+
|
141 |
+
def forward(self, x: Tensor) -> Tensor:
|
142 |
+
identity = x
|
143 |
+
|
144 |
+
out = self.conv1(x)
|
145 |
+
out = self.bn1(out)
|
146 |
+
out = self.relu(out)
|
147 |
+
|
148 |
+
out = self.conv2(out)
|
149 |
+
out = self.bn2(out)
|
150 |
+
out = self.relu(out)
|
151 |
+
|
152 |
+
out = self.conv3(out)
|
153 |
+
out = self.bn3(out)
|
154 |
+
|
155 |
+
if self.downsample is not None:
|
156 |
+
identity = self.downsample(x)
|
157 |
+
|
158 |
+
out += identity
|
159 |
+
out = self.relu(out)
|
160 |
+
|
161 |
+
return out
|
162 |
+
|
163 |
+
|
164 |
+
class ResNet(nn.Module):
|
165 |
+
def __init__(
|
166 |
+
self,
|
167 |
+
block: Type[Union[BasicBlock, Bottleneck]],
|
168 |
+
layers: List[int],
|
169 |
+
num_classes: int = 1000,
|
170 |
+
zero_init_residual: bool = False,
|
171 |
+
groups: int = 1,
|
172 |
+
width_per_group: int = 64,
|
173 |
+
replace_stride_with_dilation: Optional[List[bool]] = None,
|
174 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
175 |
+
) -> None:
|
176 |
+
super().__init__()
|
177 |
+
# _log_api_usage_once(self)
|
178 |
+
if norm_layer is None:
|
179 |
+
norm_layer = nn.BatchNorm2d
|
180 |
+
self._norm_layer = norm_layer
|
181 |
+
|
182 |
+
self.inplanes = 64
|
183 |
+
self.dilation = 1
|
184 |
+
if replace_stride_with_dilation is None:
|
185 |
+
# each element in the tuple indicates if we should replace
|
186 |
+
# the 2x2 stride with a dilated convolution instead
|
187 |
+
replace_stride_with_dilation = [False, False, False]
|
188 |
+
if len(replace_stride_with_dilation) != 3:
|
189 |
+
raise ValueError(
|
190 |
+
"replace_stride_with_dilation should be None "
|
191 |
+
f"or a 3-element tuple, got {replace_stride_with_dilation}"
|
192 |
+
)
|
193 |
+
self.groups = groups
|
194 |
+
self.base_width = width_per_group
|
195 |
+
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
|
196 |
+
self.bn1 = norm_layer(self.inplanes)
|
197 |
+
self.relu = nn.ReLU(inplace=True)
|
198 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
199 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
200 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
|
201 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
|
202 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
|
203 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
204 |
+
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
205 |
+
|
206 |
+
for m in self.modules():
|
207 |
+
if isinstance(m, nn.Conv2d):
|
208 |
+
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
209 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
210 |
+
nn.init.constant_(m.weight, 1)
|
211 |
+
nn.init.constant_(m.bias, 0)
|
212 |
+
|
213 |
+
# Zero-initialize the last BN in each residual branch,
|
214 |
+
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
215 |
+
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
216 |
+
if zero_init_residual:
|
217 |
+
for m in self.modules():
|
218 |
+
if isinstance(m, Bottleneck):
|
219 |
+
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
|
220 |
+
elif isinstance(m, BasicBlock):
|
221 |
+
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
|
222 |
+
|
223 |
+
def _make_layer(
|
224 |
+
self,
|
225 |
+
block: Type[Union[BasicBlock, Bottleneck]],
|
226 |
+
planes: int,
|
227 |
+
blocks: int,
|
228 |
+
stride: int = 1,
|
229 |
+
dilate: bool = False,
|
230 |
+
) -> nn.Sequential:
|
231 |
+
norm_layer = self._norm_layer
|
232 |
+
downsample = None
|
233 |
+
previous_dilation = self.dilation
|
234 |
+
if dilate:
|
235 |
+
self.dilation *= stride
|
236 |
+
stride = 1
|
237 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
238 |
+
downsample = nn.Sequential(
|
239 |
+
conv1x1(self.inplanes, planes * block.expansion, stride),
|
240 |
+
norm_layer(planes * block.expansion),
|
241 |
+
)
|
242 |
+
|
243 |
+
layers = []
|
244 |
+
layers.append(
|
245 |
+
block(
|
246 |
+
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
|
247 |
+
)
|
248 |
+
)
|
249 |
+
self.inplanes = planes * block.expansion
|
250 |
+
for _ in range(1, blocks):
|
251 |
+
layers.append(
|
252 |
+
block(
|
253 |
+
self.inplanes,
|
254 |
+
planes,
|
255 |
+
groups=self.groups,
|
256 |
+
base_width=self.base_width,
|
257 |
+
dilation=self.dilation,
|
258 |
+
norm_layer=norm_layer,
|
259 |
+
)
|
260 |
+
)
|
261 |
+
|
262 |
+
return nn.Sequential(*layers)
|
263 |
+
|
264 |
+
def _forward_impl(self, x: Tensor) -> Tensor:
|
265 |
+
# See note [TorchScript super()]
|
266 |
+
x = self.conv1(x)
|
267 |
+
x = self.bn1(x)
|
268 |
+
x = self.relu(x)
|
269 |
+
x = self.maxpool(x)
|
270 |
+
|
271 |
+
x = self.layer1(x)
|
272 |
+
x = self.layer2(x)
|
273 |
+
x = self.layer3(x)
|
274 |
+
x = self.layer4(x)
|
275 |
+
|
276 |
+
x = self.avgpool(x)
|
277 |
+
x = torch.flatten(x, 1)
|
278 |
+
x = self.fc(x)
|
279 |
+
|
280 |
+
return x
|
281 |
+
|
282 |
+
def forward(self, x: Tensor) -> Tensor:
|
283 |
+
return self._forward_impl(x)
|
284 |
+
|
285 |
+
|
286 |
+
def _resnet(
|
287 |
+
arch: str,
|
288 |
+
block: Type[Union[BasicBlock, Bottleneck]],
|
289 |
+
layers: List[int],
|
290 |
+
pretrained: bool,
|
291 |
+
progress: bool,
|
292 |
+
**kwargs: Any,
|
293 |
+
) -> ResNet:
|
294 |
+
model = ResNet(block, layers, **kwargs)
|
295 |
+
if pretrained:
|
296 |
+
if arch == 'resnet50':
|
297 |
+
state_dict = torch.load(r'pretrained_models/resnet50-0676ba61.pth')
|
298 |
+
else:
|
299 |
+
state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
|
300 |
+
model.load_state_dict(state_dict)
|
301 |
+
return model
|
302 |
+
|
303 |
+
|
304 |
+
def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
305 |
+
r"""ResNet-18 model from
|
306 |
+
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
307 |
+
|
308 |
+
Args:
|
309 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
310 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
311 |
+
"""
|
312 |
+
return _resnet("resnet18", BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs)
|
313 |
+
|
314 |
+
|
315 |
+
def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
316 |
+
r"""ResNet-34 model from
|
317 |
+
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
318 |
+
|
319 |
+
Args:
|
320 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
321 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
322 |
+
"""
|
323 |
+
return _resnet("resnet34", BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs)
|
324 |
+
|
325 |
+
|
326 |
+
def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
327 |
+
r"""ResNet-50 model from
|
328 |
+
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
329 |
+
|
330 |
+
Args:
|
331 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
332 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
333 |
+
"""
|
334 |
+
return _resnet("resnet50", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
|
335 |
+
|
336 |
+
|
337 |
+
def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
338 |
+
r"""ResNet-101 model from
|
339 |
+
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
340 |
+
|
341 |
+
Args:
|
342 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
343 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
344 |
+
"""
|
345 |
+
return _resnet("resnet101", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
|
346 |
+
|
347 |
+
|
348 |
+
def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
349 |
+
r"""ResNet-152 model from
|
350 |
+
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
351 |
+
|
352 |
+
Args:
|
353 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
354 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
355 |
+
"""
|
356 |
+
return _resnet("resnet152", Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs)
|
357 |
+
|
358 |
+
|
359 |
+
def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
360 |
+
r"""ResNeXt-50 32x4d model from
|
361 |
+
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
|
362 |
+
|
363 |
+
Args:
|
364 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
365 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
366 |
+
"""
|
367 |
+
kwargs["groups"] = 32
|
368 |
+
kwargs["width_per_group"] = 4
|
369 |
+
return _resnet("resnext50_32x4d", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
|
370 |
+
|
371 |
+
|
372 |
+
def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
373 |
+
r"""ResNeXt-101 32x8d model from
|
374 |
+
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
|
375 |
+
|
376 |
+
Args:
|
377 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
378 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
379 |
+
"""
|
380 |
+
kwargs["groups"] = 32
|
381 |
+
kwargs["width_per_group"] = 8
|
382 |
+
return _resnet("resnext101_32x8d", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
|
383 |
+
|
384 |
+
|
385 |
+
|
386 |
+
def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
387 |
+
r"""Wide ResNet-50-2 model from
|
388 |
+
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
|
389 |
+
|
390 |
+
The model is the same as ResNet except for the bottleneck number of channels
|
391 |
+
which is twice larger in every block. The number of channels in outer 1x1
|
392 |
+
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
|
393 |
+
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
|
394 |
+
|
395 |
+
Args:
|
396 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
397 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
398 |
+
"""
|
399 |
+
kwargs["width_per_group"] = 64 * 2
|
400 |
+
return _resnet("wide_resnet50_2", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
|
401 |
+
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
406 |
+
r"""Wide ResNet-101-2 model from
|
407 |
+
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
|
408 |
+
|
409 |
+
The model is the same as ResNet except for the bottleneck number of channels
|
410 |
+
which is twice larger in every block. The number of channels in outer 1x1
|
411 |
+
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
|
412 |
+
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
416 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
417 |
+
"""
|
418 |
+
kwargs["width_per_group"] = 64 * 2
|
419 |
+
return _resnet("wide_resnet101_2", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
|