Tanzeer commited on
Commit
adda212
·
1 Parent(s): 660142e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -2
app.py CHANGED
@@ -21,6 +21,7 @@ def count_and_label_red_patches(heatmap, threshold=200):
21
 
22
  num_red_patches = labels.max()
23
 
 
24
  for i in range(1, num_red_patches + 1):
25
  patch_mask = (labels == i)
26
  patch_centroid_x, patch_centroid_y = int(stats[i, cv2.CC_STAT_LEFT] + stats[i, cv2.CC_STAT_WIDTH] / 2), int(stats[i, cv2.CC_STAT_TOP] + stats[i, cv2.CC_STAT_HEIGHT] / 2)
@@ -45,26 +46,33 @@ if uploaded_image:
45
 
46
  pred_saliency = model(img).squeeze().detach().numpy()
47
 
 
48
  heatmap = (pred_saliency * 255).astype(np.uint8)
49
- heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
50
 
 
51
  heatmap = cv2.resize(heatmap, (image.width, image.height))
52
 
 
53
  heatmap, num_red_patches = count_and_label_red_patches(heatmap)
54
 
 
55
  enhanced_image = np.array(image)
56
  b, g, r = cv2.split(enhanced_image)
57
  clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
58
  b_enhanced = clahe.apply(b)
59
  enhanced_image = cv2.merge((b_enhanced, g, r))
60
 
61
- alpha = 0.7
62
  blended_img = cv2.addWeighted(enhanced_image, 1 - alpha, heatmap, alpha, 0)
63
 
 
64
  st.image(heatmap, caption='Enhanced Saliency Heatmap', use_column_width=True, channels='BGR')
65
  st.image(enhanced_image, caption='Enhanced Blue Image', use_column_width=True, channels='BGR')
66
 
 
67
  st.image(blended_img, caption=f'Blended Image with {num_red_patches} Red Patches', use_column_width=True, channels='BGR')
68
 
 
69
  cv2.imwrite('example/result15.png', blended_img, [int(cv2.IMWRITE_JPEG_QUALITY), 200])
70
  st.success('Saliency detection complete. Result saved as "example/result15.png".')
 
21
 
22
  num_red_patches = labels.max()
23
 
24
+ # Iterate through the labeled patches and put sequential numbers on top
25
  for i in range(1, num_red_patches + 1):
26
  patch_mask = (labels == i)
27
  patch_centroid_x, patch_centroid_y = int(stats[i, cv2.CC_STAT_LEFT] + stats[i, cv2.CC_STAT_WIDTH] / 2), int(stats[i, cv2.CC_STAT_TOP] + stats[i, cv2.CC_STAT_HEIGHT] / 2)
 
46
 
47
  pred_saliency = model(img).squeeze().detach().numpy()
48
 
49
+ # Convert the saliency map to a heatmap with a blue color map
50
  heatmap = (pred_saliency * 255).astype(np.uint8)
51
+ heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) # Use a blue colormap (JET)
52
 
53
+ # Resize the heatmap to match the image dimensions
54
  heatmap = cv2.resize(heatmap, (image.width, image.height))
55
 
56
+ # Overlay red patch labels on the heatmap
57
  heatmap, num_red_patches = count_and_label_red_patches(heatmap)
58
 
59
+ # Convert the image to a NumPy array and enhance the blue channel using CLAHE
60
  enhanced_image = np.array(image)
61
  b, g, r = cv2.split(enhanced_image)
62
  clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
63
  b_enhanced = clahe.apply(b)
64
  enhanced_image = cv2.merge((b_enhanced, g, r))
65
 
66
+ alpha = 0.7 # Adjust alpha to control the blending
67
  blended_img = cv2.addWeighted(enhanced_image, 1 - alpha, heatmap, alpha, 0)
68
 
69
+ # Display the images in your Streamlit app
70
  st.image(heatmap, caption='Enhanced Saliency Heatmap', use_column_width=True, channels='BGR')
71
  st.image(enhanced_image, caption='Enhanced Blue Image', use_column_width=True, channels='BGR')
72
 
73
+ # Overlay the red patch count on the blended image
74
  st.image(blended_img, caption=f'Blended Image with {num_red_patches} Red Patches', use_column_width=True, channels='BGR')
75
 
76
+ # Save the result image
77
  cv2.imwrite('example/result15.png', blended_img, [int(cv2.IMWRITE_JPEG_QUALITY), 200])
78
  st.success('Saliency detection complete. Result saved as "example/result15.png".')