import streamlit as st import cv2 import numpy as np import torch from torchvision import transforms, models from PIL import Image from TranSalNet_Res import TranSalNet from tqdm import tqdm import torch.nn as nn from utils.data_process import preprocess_img, postprocess_img device = torch.device('cpu') model = TranSalNet() model.load_state_dict(torch.load('pretrained_models/TranSalNet_Res.pth', map_location=torch.device('cpu'))) model.to(device) model.eval() st.title('Saliency Detection App') st.write('Upload an image for saliency detection:') uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_image: image = Image.open(uploaded_image) st.image(image, caption='Uploaded Image', use_column_width=True) if st.button('Detect Saliency'): img = image.resize((384, 288)) img = np.array(img) / 100. img = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0) img = torch.from_numpy(img) img = img.type(torch.FloatTensor).to(device) pred_saliency = model(img) toPIL = transforms.ToPILImage() pic = toPIL(pred_saliency.squeeze()) colorized_img = cv2.applyColorMap(np.uint8(pic), cv2.COLORMAP_OCEAN) original_img = np.array(image) colorized_img = cv2.resize(colorized_img, (original_img.shape[1], original_img.shape[0])) alpha = 0.7 blended_img = cv2.addWeighted(original_img, 1 - alpha, colorized_img, alpha, 0) # Find all contours contours, _ = cv2.findContours(np.uint8(pred_saliency.squeeze().detach().numpy() * 255), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) saliency_8bit = np.uint8(pred_saliency.squeeze().detach().numpy() * 255) # Apply dilation kernel = np.ones((5,5),np.uint8) dilated = cv2.dilate(saliency_8bit, kernel, iterations = 1) # Find contours on dilated image contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) font = cv2.FONT_HERSHEY_SIMPLEX label = 1 for contour in contours: # Get bounding box for contour x, y, w, h = cv2.boundingRect(contour) # Calculate center of bounding box center_x = x + w // 2 center_y = y + h // 2 # Find point on contour closest to center of bounding box distances = np.sqrt((contour[:,0,0] - center_x)**2 + (contour[:,0,1] - center_y)**2) min_index = np.argmin(distances) closest_point = tuple(contour[min_index][0]) # Place label at closest point on contour cv2.putText(blended_img, str(label), closest_point, font, 1, (0, 0, 255), 3, cv2.LINE_AA) label += 1 st.image(blended_img, caption='Blended Image with Labels', use_column_width=True) cv2.imwrite('example/result15.png', blended_img, [int(cv2.IMWRITE_JPEG_QUALITY), 200]) st.success('Saliency detection complete. Result saved as "example/result15.png".')