import streamlit as st import cv2 import numpy as np import torch from torchvision import transforms, utils, models from PIL import Image from TranSalNet_Res import TranSalNet from tqdm import tqdm import torch.nn as nn from utils.data_process import preprocess_img, postprocess_img # Load the model and set the device device = torch.device('cpu') model = TranSalNet() model.load_state_dict(torch.load('pretrained_models/TranSalNet_Res.pth', map_location=torch.device('cpu'))) model.to(device) model.eval() # Define Streamlit app st.title('Saliency Detection App') st.write('Upload an image for saliency detection:') uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_image: image = Image.open(uploaded_image) st.image(image, caption='Uploaded Image', use_column_width=True) # Check if the user clicks a button if st.button('Detect Saliency'): # Preprocess the image img = image.resize((384, 288)) img = np.array(img) / 255. img = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0) img = torch.from_numpy(img) img = img.type(torch.FloatTensor).to(device) # Get saliency prediction pred_saliency = model(img) # Convert the result back to a PIL image toPIL = transforms.ToPILImage() pic = toPIL(pred_saliency.squeeze()) # Colorize the grayscale prediction colorized_img = cv2.applyColorMap(np.uint8(pic), cv2.COLORMAP_JET) # Ensure the colorized image has the same dimensions as the original image original_img = np.array(image) colorized_img = cv2.resize(colorized_img, (original_img.shape[1], original_img.shape[0])) # Compute intensity values from the colorized image intensity_map = cv2.cvtColor(colorized_img, cv2.COLOR_BGR2GRAY) # Threshold the intensity map to create a binary mask _, binary_map = cv2.threshold(intensity_map, 0, 255, cv2.THRESH_BINARY) # Find contours in the binary map contours, _ = cv2.findContours(binary_map, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Sort the contours by area in descending order contours = sorted(contours, key=cv2.contourArea, reverse=True) # Create an empty label map for ranking based on area label_map = np.zeros_like(intensity_map) # Rank and label each region based on area for i, contour in enumerate(contours): M = cv2.moments(contour) if M["m00"] == 0: continue center_x = int(M["m10"] / M["m00"]) center_y = int(M["m01"] / M["m00"]) cv2.putText(label_map, str(i + 1), (center_x, center_y), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 2, cv2.LINE_AA) # Blend the colorized image with the original image alpha = 0.6 # Adjust the alpha value to control blending strength blended_img = cv2.addWeighted(original_img, 1 - alpha, colorized_img, alpha, 0) # Overlay the labels on the blended image font = cv2.FONT_HERSHEY_SIMPLEX for i in range(1, len(contours) + 1): mask = (label_map == i).astype(np.uint8) x, y, w, h = cv2.boundingRect(contours[i-1]) org = (x, y) color = (255, 0, 0) # Blue color thickness = 3 cv2.putText(blended_img, str(i), org, font, 1, color, thickness, cv2.LINE_AA) # Display the final result st.image(colorized_img, caption='Colorized Saliency Map', use_column_width=True) st.image(blended_img, caption='Blended Image with Labels', use_column_width=True) # Save the final result cv2.imwrite('example/result15.png', blended_img, [int(cv2.IMWRITE_JPEG_QUALITY), 50]) st.success('Saliency detection complete. Result saved as "example/result15.png".') st.write('Finished, check the result at: example/result15.png')